cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 22 results. Next

A195323 a(n) = 22*n^2.

Original entry on oeis.org

0, 22, 88, 198, 352, 550, 792, 1078, 1408, 1782, 2200, 2662, 3168, 3718, 4312, 4950, 5632, 6358, 7128, 7942, 8800, 9702, 10648, 11638, 12672, 13750, 14872, 16038, 17248, 18502, 19800, 21142, 22528, 23958, 25432, 26950, 28512, 30118, 31768, 33462, 35200, 36982, 38808
Offset: 0

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 22, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195318 in the same spiral.
Surface area of a rectangular prism with dimensions n, 2n and 3n. - Wesley Ivan Hurt, Apr 10 2015

Crossrefs

Programs

Formula

a(n) = 22*A000290(n) = 11*A001105(n) = 2*A033584(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Sep 19 2011
G.f.: 22*x*(1+x)/(1-x)^3. - Wesley Ivan Hurt, Apr 10 2015
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 22*x*(1 + x)*exp(x).
a(n) = n*A008604(n) = A195149(2*n). (End)

A016910 a(n) = (6*n)^2.

Original entry on oeis.org

0, 36, 144, 324, 576, 900, 1296, 1764, 2304, 2916, 3600, 4356, 5184, 6084, 7056, 8100, 9216, 10404, 11664, 12996, 14400, 15876, 17424, 19044, 20736, 22500, 24336, 26244, 28224, 30276, 32400, 34596, 36864, 39204, 41616, 44100, 46656, 49284, 51984, 54756, 57600, 60516, 63504, 66564, 69696, 72900
Offset: 0

Views

Author

Keywords

Comments

Areas A of two classes of triangles with integer sides (a,b,c) where a = 9k, b=10k and c = 17k, or a = 3k, b = 25k and c = 26k for k=0,1,2,... These areas are given by Heron's formula A = sqrt(s(s-a)(s-b)(s-c)) = (6k)^2, with the semiperimeter s = (a+b+c)/2. This sequence is a subsequence of A188158. - Michel Lagneau, Oct 11 2013
Sequence found by reading the line from 0, in the direction 0, 36, ..., in the square spiral whose vertices are the generalized 20-gonal numbers A218864. - Omar E. Pol, May 13 2018.

Crossrefs

Cf. similar sequences of the type k*n^2: A000290 (k=1), A001105 (k=2), A033428 (k=3), A016742 (k=4), A033429 (k=5), A033581 (k=6), A033582 (k=7), A139098 (k=8), A016766 (k=9), A033583 (k=10), A033584 (k=11), A135453 (k=12), A152742 (k=13), A144555 (k=14), A064761 (k=15), A016802 (k=16), A244630 (k=17), A195321 (k=18), A244631 (k=19), A195322 (k=20), A064762 (k=21), A195323 (k=22), A244632 (k=23), A195824 (k=24), A016850 (k=25), A244633 (k=26), A244634 (k=27), A064763 (k=28), A244635 (k=29), A244636 (k=30).

Programs

Formula

From Ilya Gutkovskiy, Jun 09 2016: (Start)
O.g.f.: 36*x*(1 + x)/(1 - x)^3.
E.g.f.: 36*x*(1 + x)*exp(x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
Sum_{n>=1} 1/a(n) = Pi^2/216 = A086726. (End)
Product_{n>=1} a(n)/A136017(n) = Pi/3. - Fred Daniel Kline, Jun 09 2016
a(n) = t(9*n) - 9*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(9*n) - 9*A000217(n). - Bruno Berselli, Aug 31 2017
a(n) = 36*A000290(n) = 18*A001105(n) = 12*A033428 = 9*A016742(n) = 6*A033581(n) = 4*A016766(n) = 3*A135453(n) = 2*A195321(n). - Omar E. Pol, Jun 07 2018
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/432. - Amiram Eldar, Jun 27 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/6)/(Pi/6).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/6)/(Pi/6) = 3/Pi (A089491). (End)

A195025 a(n) = n*(14*n + 3).

Original entry on oeis.org

0, 17, 62, 135, 236, 365, 522, 707, 920, 1161, 1430, 1727, 2052, 2405, 2786, 3195, 3632, 4097, 4590, 5111, 5660, 6237, 6842, 7475, 8136, 8825, 9542, 10287, 11060, 11861, 12690, 13547, 14432, 15345, 16286, 17255, 18252, 19277, 20330, 21411, 22520, 23657, 24822, 26015
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 17, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
a(k) is a square for k = (3/56)*((449 + 120*sqrt(14))^n + (449 - 120*sqrt(14))^n - 2). - Bruno Berselli, Oct 18 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 3*n.
G.f.: x*(17+11*x)/(1-x)^3. - Bruno Berselli, Oct 18 2011
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(17 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195314 Centered 28-gonal numbers.

Original entry on oeis.org

1, 29, 85, 169, 281, 421, 589, 785, 1009, 1261, 1541, 1849, 2185, 2549, 2941, 3361, 3809, 4285, 4789, 5321, 5881, 6469, 7085, 7729, 8401, 9101, 9829, 10585, 11369, 12181, 13021, 13889, 14785, 15709, 16661, 17641, 18649, 19685, 20749, 21841, 22961, 24109, 25285, 26489
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 29, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Semi-axis opposite to A144555 in the same spiral.

Crossrefs

Programs

  • Magma
    [(14*n^2-14*n+1): n in [1..50]]; // Vincenzo Librandi, Sep 19 2011
    
  • Mathematica
    Table[14n^2-14n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,29,85},50]
  • PARI
    a(n)=14*n^2-14*n+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 14*n^2 - 14*n + 1.
G.f.: -x*(1 + 26*x + x^2)/(x-1)^3. - R. J. Mathar, Sep 18 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 01 2011
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5/7)*Pi/2)/(2*sqrt(35)). - Amiram Eldar, Feb 11 2022
From Elmo R. Oliveira, Nov 14 2024: (Start)
E.g.f.: exp(x)*(14*x^2 + 1) - 1.
a(n) = 2*A069127(n) - 1. (End)

A249327 Rectangular array T(n,k) = f(n)*k^2, where f = A005117 (squarefree numbers); n, k >= 1; read by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 8, 3, 16, 18, 12, 5, 25, 32, 27, 20, 6, 36, 50, 48, 45, 24, 7, 49, 72, 75, 80, 54, 28, 10, 64, 98, 108, 125, 96, 63, 40, 11, 81, 128, 147, 180, 150, 112, 90, 44, 13, 100, 162, 192, 245, 216, 175, 160, 99, 52, 14, 121, 200, 243, 320, 294, 252, 250
Offset: 1

Views

Author

Clark Kimberling, Oct 26 2014

Keywords

Comments

Every positive integer occurs exactly once.

Examples

			Northwest corner:
1   4    9    16   25    36    49
2   8    18   32   50    72    98
3   12   27   48   75    108   147
5   20   45   80   125   180   245
6   24   54   96   150   216   294
		

Crossrefs

Cf. A005117, A000037 (is partitioned by the rows of A249327, excluding the first).

Programs

  • Mathematica
    z = 20; f = Select[Range[10000], SquareFreeQ[#] &];
    u[n_, k_] := f[[n]]*k^2; t = Table[u[n, k], {n, 1, 20}, {k, 1, 20}];
    TableForm[t] (* A249327 array *)
    Table[u[k, n - k + 1], {n, 1, 15}, {k, 1, n}] // Flatten (* A249327 sequence *)

Formula

T(1,k) = A000290(k), T(2,k) = A001105(k), T(3,k) = A033428(k), T(4,k) = A033429(k), T(5,.) through T(10,.) are A033581, A033582, A033583, A033584, A152742 and A144555 without initial 0. - M. F. Hasler, Oct 31 2014

A064763 a(n) = 28*n^2.

Original entry on oeis.org

0, 28, 112, 252, 448, 700, 1008, 1372, 1792, 2268, 2800, 3388, 4032, 4732, 5488, 6300, 7168, 8092, 9072, 10108, 11200, 12348, 13552, 14812, 16128, 17500, 18928, 20412, 21952, 23548, 25200, 26908, 28672, 30492, 32368, 34300, 36288, 38332
Offset: 0

Views

Author

Roberto E. Martinez II, Oct 18 2001

Keywords

Comments

Number of edges in a complete 8-partite graph of order 8n, K_n,n,n,n,n,n,n,n.
Sequence found by reading the line from 0, in the direction 0, 28, ..., in the square spiral whose vertices are the generalized 16-gonal numbers. - Omar E. Pol, Jul 03 2014

Crossrefs

Similar sequences are listed in A244630.

Programs

Formula

a(n) = 56*n + a(n-1) - 28 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = 28*A000290(n) = 14*A001105(n) = 7*A016742(n) = 4*A033582(n) = 2*A144555(n). - Omar E. Pol, Jul 03 2014
From Vincenzo Librandi, Mar 30 2015: (Start)
G.f.: 28*x*(1+x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = t(8*n) - 8*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(8*n) - 8*A000217(n). - Bruno Berselli, Aug 31 2017
From Elmo R. Oliveira, Dec 01 2024: (Start)
E.g.f.: 28*x*(1 + x)*exp(x).
a(n) = n*A135628(n). (End)

A195026 a(n) = 7*n*(2*n + 1).

Original entry on oeis.org

0, 21, 70, 147, 252, 385, 546, 735, 952, 1197, 1470, 1771, 2100, 2457, 2842, 3255, 3696, 4165, 4662, 5187, 5740, 6321, 6930, 7567, 8232, 8925, 9646, 10395, 11172, 11977, 12810, 13671, 14560, 15477, 16422, 17395, 18396, 19425, 20482, 21567, 22680, 23821, 24990
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 21, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-diagonal opposite to A195320 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
Sum of the numbers from 6*n to 8*n. - Wesley Ivan Hurt, Dec 23 2015

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 7*n.
a(n) = 7*A014105(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 7*x*(3+x)/(1-x)^3. (End)
a(n) = Sum_{i=6*n..8*n} i. - Wesley Ivan Hurt, Dec 23 2015
E.g.f.: 7*exp(x)*x*(3 + 2*x). - Elmo R. Oliveira, Dec 29 2024

A195027 a(n) = 2*n*(7*n + 5).

Original entry on oeis.org

0, 24, 76, 156, 264, 400, 564, 756, 976, 1224, 1500, 1804, 2136, 2496, 2884, 3300, 3744, 4216, 4716, 5244, 5800, 6384, 6996, 7636, 8304, 9000, 9724, 10476, 11256, 12064, 12900, 13764, 14656, 15576, 16524, 17500, 18504, 19536, 20596, 21684, 22800, 23944, 25116, 26316
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 24, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-axis opposite to A195023 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 10*n.
a(n) = 4*A179986(n). - Bruno Berselli, Oct 13 2011
G.f.: 4*x*(6+x)/(1-x)^3. - Colin Barker, Jan 09 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=0, a(1)=24, a(2)=76. - Harvey P. Dale, Jul 24 2012
E.g.f.: 2*exp(x)*x*(12 + 7*x). - Elmo R. Oliveira, Dec 30 2024

A195028 a(n) = n*(14*n + 13).

Original entry on oeis.org

0, 27, 82, 165, 276, 415, 582, 777, 1000, 1251, 1530, 1837, 2172, 2535, 2926, 3345, 3792, 4267, 4770, 5301, 5860, 6447, 7062, 7705, 8376, 9075, 9802, 10557, 11340, 12151, 12990, 13857, 14752, 15675, 16626, 17605, 18612, 19647, 20710, 21801, 22920, 24067, 25242
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 27, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Numbers opposite to the semi-diagonal A195024 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n.
G.f.: x*(27+x)/(1-x)^3. - Colin Barker, Jan 09 2012
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(27 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195029 a(n) = n*(14*n + 13) + 3.

Original entry on oeis.org

3, 30, 85, 168, 279, 418, 585, 780, 1003, 1254, 1533, 1840, 2175, 2538, 2929, 3348, 3795, 4270, 4773, 5304, 5863, 6450, 7065, 7708, 8379, 9078, 9805, 10560, 11343, 12154, 12993, 13860, 14755, 15678, 16629, 17608, 18615, 19650, 20713, 21804, 22923, 24070, 25245
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011

Keywords

Comments

Sequence found by reading the line from 3, in the direction 3, 30, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the semi-diagonal parallel to A195024 and also parallel to A195028 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
56*a(n) + 1 is a perfect square. - Bruno Berselli, Feb 14 2017

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 13*n + 3 = A195028(n) + 3 = (2*n + 1)*(7*n + 3).
From Colin Barker, Apr 09 2012: (Start)
G.f.: (3 + 21*x + 4*x^2)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Dec 29 2024: (Start)
E.g.f.: exp(x)*(3 + 27*x + 14*x^2).
a(n) = A005408(n)*A017017(n) = A022264(2*n+1). (End)

Extensions

Edited by Bruno Berselli, Feb 14 2017
Previous Showing 11-20 of 22 results. Next