cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A283123 a(n) = sigma(9*n).

Original entry on oeis.org

13, 39, 40, 91, 78, 120, 104, 195, 121, 234, 156, 280, 182, 312, 240, 403, 234, 363, 260, 546, 320, 468, 312, 600, 403, 546, 364, 728, 390, 720, 416, 819, 480, 702, 624, 847, 494, 780, 560, 1170, 546, 960, 572, 1092, 726, 936, 624, 1240, 741, 1209
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Comments

In general, for k>=1, Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k). - Vaclav Kotesovec, May 11 2024

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), A283118 (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), this sequence (k=9).
Cf. A008591.

Programs

Formula

a(n) = A000203(9*n).
Sum_{k=1..n} a(k) = (35*Pi^2/36) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A283118 a(n) = sigma(5*n).

Original entry on oeis.org

6, 18, 24, 42, 31, 72, 48, 90, 78, 93, 72, 168, 84, 144, 124, 186, 108, 234, 120, 217, 192, 216, 144, 360, 156, 252, 240, 336, 180, 372, 192, 378, 288, 324, 248, 546, 228, 360, 336, 465, 252, 576, 264, 504, 403, 432, 288, 744, 342, 468, 432, 588, 324, 720
Offset: 1

Views

Author

Seiichi Manyama, Mar 01 2017

Keywords

Crossrefs

Sigma(k*n): A000203 (k=1), A062731 (k=2), A144613 (k=3), A193553 (k=4), this sequence (k=5), A224613 (k=6), A283078 (k=7), A283122 (k=8), A283123 (k=9).
Cf. A008587.

Programs

Formula

a(n) = A000203(5*n).
Sum_{k=1..n} a(k) = (29*Pi^2/60) * n^2 + O(n*log(n)). - Amiram Eldar, Dec 16 2022

A185654 G.f.: exp( Sum_{n>=1} -sigma(3n)*x^n/n ).

Original entry on oeis.org

1, -4, 2, 9, -9, -2, 0, -5, 9, 9, 0, -9, -1, -9, 0, -1, 9, 9, -9, 9, 0, 9, -5, -18, -18, 9, 7, 0, 9, 0, 0, 9, 9, -18, 18, -7, -9, -9, -9, 9, -4, -9, -9, 18, 9, 0, 18, 9, 0, -9, -9, -8, -9, 18, -9, 9, -18, 1, -9, -18, 9, 0, 18, 18, 0, 0, 9, -9, 18, -9, 5, -9, 0, -9, -9, -9, -18, 11, 9
Offset: 0

Views

Author

Paul D. Hanna, Feb 16 2011

Keywords

Examples

			G.f. = 1 - 4*x + 2*x^2 + 9*x^3 - 9*x^4 - 2*x^5 - 5*x^7 + 9*x^8 + ... - _Michael Somos_, Jul 12 2018
		

Crossrefs

Cf. Product_{n>=1} (1 - q^n)^(k+1)/(1 - q^(k*n)): A010815 (k=1), A115110 (k=2), this sequence (k=3), A282937 (k=5), A282942 (k=7).

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4 / QPochhammer[ x^3], {x, 0, n}]; (* Michael Somos, Jul 12 2018 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,-sigma(3*m)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=local(X=x+x*O(x^n));polcoeff(eta(X)^4/eta(X^3),n)}

Formula

G.f.: E(x)^4/E(x^3) where E(x) = Product_{n>=1} (1-x^n). [From a formula by Joerg Arndt in A182819]
a(n) = -(1/n)*Sum_{k=1..n} sigma(3*k)*a(n-k). - Seiichi Manyama, Mar 04 2017
Expansion of E(x) * E(x*w) * E(x/w) in powers of x^3 where w = exp(2 Pi i / 3). - Michael Somos, Jul 12 2018

A088838 Numerator of the quotient sigma(3n)/sigma(n).

Original entry on oeis.org

4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 121, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 40, 4, 4, 13, 4, 4, 13, 4, 4, 364, 4, 4, 13, 4, 4, 13, 4, 4, 40
Offset: 1

Views

Author

Labos Elemer, Nov 04 2003

Keywords

Crossrefs

Programs

  • Maple
    A088838 := proc(n)
        numtheory[sigma](3*n)/numtheory[sigma](n) ;
        numer(%) ;
    end proc:
    seq(A088838(n),n=1..100) ; # R. J. Mathar, Nov 19 2017
    seq((3^(2+padic:-ordp(n,3))-1)/2, n=1..100); # Robert Israel, Nov 19 2017
  • Mathematica
    k=3; Table[Numerator[DivisorSigma[1, k*n]/DivisorSigma[1, n]], {n, 1, 128}]
  • PARI
    a(n) = numerator(sigma(3*n)/sigma(n)) \\ Felix Fröhlich, Nov 19 2017

Formula

From Robert Israel, Nov 19 2017: (Start)
a(n) = (3^(2+A007949(n))-1)/2.
G.f.: Sum_{k>=0} (3^(k+2)-1)*(x^(3^k)+x^(2*3^k))/(2*(1-x^(3^(k+1)))). (End)
a(n) = sigma(3*n)/(sigma(3*n) - 3*sigma(n)), where sigma(n) = A000203(n). - Peter Bala, Jun 10 2022
From Amiram Eldar, Jan 06 2023: (Start)
a(n) = numerator(A144613(n)/A000203(n)).
Sum_{k=1..n} a(k) ~ (3/log(3))*n*log(n) + (1/2 + 3*(gamma-1)/log(3))*n, where gamma is Euler's constant (A001620).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A080278(k) = 4*A214369 + 1 = 3.728614... . (End)

A319526 Square array read by antidiagonals upwards: T(n,k) = sigma(n*k), n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 3, 4, 7, 4, 7, 12, 12, 7, 6, 15, 13, 15, 6, 12, 18, 28, 28, 18, 12, 8, 28, 24, 31, 24, 28, 8, 15, 24, 39, 42, 42, 39, 24, 15, 13, 31, 32, 60, 31, 60, 32, 31, 13, 18, 39, 60, 56, 72, 72, 56, 60, 39, 18, 12, 42, 40, 63, 48, 91, 48, 63, 40, 42, 12, 28, 36, 72, 91, 90, 96, 96, 90, 91, 72, 36, 28
Offset: 1

Views

Author

Omar E. Pol, Sep 25 2018

Keywords

Examples

			The corner of the square array begins:
A000203:    1,   3,   4,   7,   6,  12,   8,  15,  13,  18,  12,  28, ...
A062731:    3,   7,  12,  15,  18,  28,  24,  31,  39,  42,  36,  60, ...
A144613:    4,  12,  13,  28,  24,  39,  32,  60,  40,  72,  48,  91, ...
A193553:    7,  15,  28,  31,  42,  60,  56,  63,  91,  90,  84, 124, ...
A283118:    6,  18,  24,  42,  31,  72,  48,  90,  78,  93,  72, 168, ...
A224613:   12,  28,  39,  60,  72,  91,  96, 124, 120, 168, 144, 195, ...
A283078:    8,  24,  32,  56,  48,  96,  57, 120, 104, 144,  96, 224, ...
A283122:   15,  31,  60,  63,  90, 124, 120, 127, 195, 186, 180, 252, ...
A283123:   13,  39,  40,  91,  78, 120, 104, 195, 121, 234, 156, 280, ...
...
		

Crossrefs

First 9 rows (also first 9 columns) are A000203, A062731, A144613, A193553, A283118, A224613, A283078, A283122, A283123.
Main diagonal gives A065764.

Programs

  • Mathematica
    Table[DivisorSigma[1, # k] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)

Formula

T(n,k) = A000203(n*k).
T(n,k) = A000203(A003991(n,k)).

A372675 a(n) = Sum_{j=1..n} Sum_{k=1..n} sigma(j*k).

Original entry on oeis.org

1, 14, 59, 190, 401, 914, 1499, 2632, 4113, 6424, 8645, 13284, 17023, 23092, 30715, 40484, 48711, 63890, 75351, 95792, 116421, 139822, 159911, 199176, 229499, 267438, 309283, 364462, 404933, 482792, 532553, 611208, 688593, 772540, 862471, 998760, 1083615, 1200328
Offset: 1

Views

Author

Vaclav Kotesovec, May 10 2024

Keywords

Comments

Sum_{j=1..n} sigma(j*k) ~ A069097(k) * Pi^2 * n^2 / (12*k).

Crossrefs

Programs

  • Mathematica
    Table[Sum[DivisorSigma[1, j*k], {j, 1, n}, {k, 1, n}], {n, 1, 50}]
    s = 1; Join[{1}, Table[s += DivisorSigma[1, n^2] + 2*Sum[DivisorSigma[1, j*n], {j, 1, n - 1}], {n, 2, 50}]]

Formula

a(n) ~ c * n^4, where c = Pi^4 / (144*zeta(3)) = 0.56274...

A341623 Numbers k such that sigma(3*k) = 8*k.

Original entry on oeis.org

28, 90, 496, 546, 8128, 33550336, 8589869056, 137438691328, 2305843008139952128, 2658455991569831744654692615953842176
Offset: 1

Views

Author

Antti Karttunen, Feb 19 2021

Keywords

Comments

Every perfect number P greater than 6 (so, P is not divisible by 3) will be found in this sequence. Proof: sigma(3*P) = sigma(3)*sigma(P) = 4*(2*P) = 8*P. - Timothy L. Tiffin, Aug 26 2021
Solutions are integers y/3 where sigma(y)/y = 8/3. - Michel Marcus, Aug 27 2021

Examples

			546 is a term, since sigma(3*546) = sigma(1638) = 4368 = 8*546. - _Timothy L. Tiffin_, Aug 26 2021
		

Crossrefs

Cf. A000396 (subsequence, apart from its terms that are divisible by 3).
Subsequence of A005101 and A227303.

Programs

  • Mathematica
    Select[Range[5*10^9], DivisorSigma[1, 3*#] == 8*# &] (* Timothy L. Tiffin, Aug 26 2021 *)
    Do[If[DivisorSigma[1, 3*k] == 8*k, Print[k]], {k, 5*10^9}] (* Timothy L. Tiffin, Aug 26 2021 *)

Extensions

a(7)-a(8) from Martin Ehrenstein, Mar 06 2021
a(9)-a(10) from Michel Marcus, Aug 27 2021
Previous Showing 11-17 of 17 results.