cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A226405 Expansion of x/((1-x-x^3)*(1-x)^3).

Original entry on oeis.org

0, 1, 4, 10, 21, 40, 71, 120, 196, 312, 487, 749, 1139, 1717, 2571, 3830, 5683, 8407, 12408, 18281, 26898, 39537, 58071, 85245, 125082, 183478, 269074, 394534, 578418, 847927, 1242926, 1821840, 2670295, 3913782, 5736217, 8407142, 12321590, 18058510, 26466393
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2013

Keywords

Comments

From Bruno Berselli, Jun 07 2013: (Start)
A050228(n) = a(n) -a(n-1), n>0.
A077868(n-1)= a(n) -2*a(n-1) +a(n-2), n>1.
A000217(n) = a(n) -a(n-1) -a(n-3), n>2.
A000930(n-1)= a(n) -3*a(n-1) +3*a(n-2) -a(n-3), n>2.
n = a(n) -2*a(n-1) +a(n-2) -a(n-3) +a(n-4), n>3.
1 = a(n) -3*a(n-1) +3*a(n-2) -2*a(n-3) +2*a(n-4) -a(n-5), n>4.
0 = a(n) -4*a(n-1) +6*a(n-2) -5*a(n-3) +4*a(n-4) -3*a(n-5) +a(n-6), n>5.
(End)

Crossrefs

Programs

  • Magma
    A226405:= func< n | n eq 0 select 0 else (&+[Binomial(n-2*j+2, j+3): j in [0..Floor((n+2)/3)]]) >;
    [A226405(n): n in [0..40]]; // G. C. Greubel, Jul 27 2022
    
  • Maple
    a:= n-> (Matrix(6, (i, j)-> if i=j-1 then 1 elif j=1 then [4, -6, 5, -4, 3, -1][i] else 0 fi)^n)[1, 2]: seq(a(n), n=0..40);
  • Mathematica
    LinearRecurrence[{4,-6,5,-4,3,-1}, {0,1,4,10,21,40}, 40]  (* Bruno Berselli, Jun 07 2013 *)
    CoefficientList[Series[x/((1-x-x^3)*(1-x)^3), {x, 0, 50}], x] (* G. C. Greubel, Apr 28 2017 *)
  • PARI
    my(x='x+O('x^50)); Vec(x/((1-x-x^3)*(1-x)^3)) \\ G. C. Greubel, Apr 28 2017
    
  • SageMath
    def A226405(n): return sum(binomial(n-2*j+2, j+3) for j in (0..((n+2)//3)))
    [A226405(n) for n in (0..40)] # G. C. Greubel, Jul 27 2022

Formula

G.f.: x/((1-x-x^3)*(1-x)^3).
From G. C. Greubel, Jul 27 2022: (Start)
a(n) = Sum_{j=0..floor((n+2)/3)} binomial(n-2*j+2, j+3).
a(n) = A099567(n+2, 3). (End)

A360152 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-5*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 73, 262, 960, 3562, 13347, 50393, 191406, 730555, 2799622, 10765092, 41513751, 160490906, 621805286, 2413738744, 9385635299, 36550685683, 142534105563, 556514122937, 2175296066129, 8511430278018, 33334299581686, 130662787246407
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A360152 := proc(n)
        add(binomial(2*n-5*k,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360152(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    a[n_] := Sum[Binomial[2*n - 5*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-5*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-2*x^3/(1+sqrt(1-4*x)))))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)) ), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+5) / (31 * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
D-finite with recurrence 2*n*a(n) +4*(-2*n+1)*a(n-1) +(-3*n+4)*a(n-2) +2*(6*n-11)*a(n-3) +(n-4)*a(n-4) +2*(-n+9)*a(n-5) +4*(-2*n+1)*a(n-6) +(-n+4)*a(n-7) +2*(2*n-9)*a(n-8)=0. - R. J. Mathar, Mar 12 2023

A360153 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-6*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 72, 258, 945, 3504, 13128, 49565, 188260, 718560, 2753721, 10588860, 40835160, 157871241, 611669250, 2374441380, 9233006541, 35956933050, 140220970200, 547490880981, 2140055896770, 8373651697800, 32795094564081, 128550662334522
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A360153 := proc(n)
        add(binomial(2*n-6*k,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360153(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    a[n_] := Sum[Binomial[2*n - 6*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-6*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3) ).
a(n) ~ 2^(2*n + 6) / (63 * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
a(n)-a(n-3) = A000984(n). - R. J. Mathar, Mar 12 2023
D-finite with recurrence n*a(n) +2*(-2*n+1)*a(n-1) -n*a(n-3) +2*(2*n-1)*a(n-4)=0. - R. J. Mathar, Mar 12 2023

A360151 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-4*k,n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 74, 267, 981, 3648, 13690, 51744, 196699, 751237, 2880345, 11080081, 42743148, 165291569, 640563158, 2487083484, 9672626600, 37674470433, 146937686295, 573781535775, 2243050091905, 8777451670102, 34379401083017, 134770951530840
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A360151 := proc(n)
        add(binomial(2*n-4*k,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360151(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    a[n_] := Sum[Binomial[2*n - 4*k, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-4*k, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^2)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^2) ), where c(x) is the g.f. of A000108.
a(n) ~ 2^(2*n+4) / (15*sqrt(Pi*n)). - Vaclav Kotesovec, Jan 28 2023
D-finite with recurrence +2*n*a(n) +(-11*n+6)*a(n-1) +(19*n-24)*a(n-2) +2*(-16*n+33)*a(n-3) +2*(11*n-36)*a(n-4) +(-25*n+78)*a(n-5) +6*(n-3)*a(n-6) +4*(-2*n+9)*a(n-7)=0. - R. J. Mathar, Mar 12 2023

A371758 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-3*k-1,n-3*k).

Original entry on oeis.org

1, 1, 3, 11, 39, 141, 519, 1933, 7263, 27479, 104543, 399543, 1532779, 5899167, 22766607, 88073091, 341425551, 1326019653, 5158412943, 20096457549, 78396460299, 306190920837, 1197181197567, 4685523856881, 18354865147011, 71962695111841, 282357198103815
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-3*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1-x^3) * (1-x)^n).
a(n) = binomial(2*n-1, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [(1-2*n)/3, 2*(1-n)/3, 1-2*n/3], 1). - Stefano Spezia, Apr 06 2024
From Vaclav Kotesovec, Apr 08 2024: (Start)
Recurrence: 3*n*(7*n-11)*a(n) = 6*(2*n-3)*(7*n-4)*a(n-1) - n*(7*n-11)*a(n-2) + 2*(2*n-3)*(7*n-4)*a(n-3).
a(n) ~ 2^(2*n+2) / (7*sqrt(Pi*n)). (End)

A360168 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n,n-3*k).

Original entry on oeis.org

1, 2, 6, 21, 78, 297, 1145, 4447, 17358, 68001, 267141, 1051767, 4148281, 16385111, 64797543, 256515731, 1016368078, 4030114641, 15990813773, 63485616391, 252175202373, 1002136689071, 3984080489263, 15844839393411, 63036297959993, 250855287692647
Offset: 0

Views

Author

Seiichi Manyama, Jan 28 2023

Keywords

Crossrefs

Programs

  • Maple
    A360168 := proc(n)
        add(binomial(2*n,n-3*k),k=0..n/3) ;
    end proc:
    seq(A360168(n),n=0..70) ; # R. J. Mathar, Mar 12 2023
  • Mathematica
    a[n_] := Sum[Binomial[2*n, n - 3*k], {k, 0, Floor[n/3]}]; Array[a, 26, 0] (* Amiram Eldar, Jan 28 2023 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n, n-3*k));
    
  • PARI
    my(N=30, x='x+O('x^N)); Vec(1/(sqrt(1-4*x)*(1-x^3*(2/(1+sqrt(1-4*x)))^6)))

Formula

G.f.: 1 / ( sqrt(1-4*x) * (1 - x^3 * c(x)^6) ), where c(x) is the g.f. of A000108.
D-finite with recurrence n*a(n) +2*(-4*n+3)*a(n-1) +8*(2*n-3)*a(n-2) +3*(-n+2)=0. - R. J. Mathar, Mar 12 2023
a(n) = [x^n] 1/(((1-x)^3-x^3) * (1-x)^(n-2)). - Seiichi Manyama, Apr 10 2024

A371754 a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-2*k,n-3*k).

Original entry on oeis.org

1, 3, 15, 85, 505, 3081, 19125, 120173, 761995, 4865697, 31244029, 201544551, 1305039209, 8477521051, 55221311565, 360559717807, 2359123470971, 15463951609491, 101530816122729, 667587477393509, 4395294402200983, 28972295880583861, 191181607835416543
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[3n-2k,n-3k],{k,0,Floor[n/3]}],{n,0,30}] (* Harvey P. Dale, Oct 19 2024 *)
  • PARI
    a(n) = sum(k=0, n\3, binomial(3*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/((1-x-x^3) * (1-x)^(2*n)).
a(n) ~ 3^(3*n + 5/2) / (17 * sqrt(Pi*n) * 2^(2*n)). - Vaclav Kotesovec, Apr 05 2024

A371756 a(n) = Sum_{k=0..floor(n/3)} binomial(5*n-2*k,n-3*k).

Original entry on oeis.org

1, 5, 45, 456, 4863, 53383, 597052, 6765471, 77407257, 892270250, 10346070471, 120542238796, 1410040212166, 16549315766244, 194792566133507, 2298472850258746, 27179673132135409, 322013956853586970, 3821532498419234994, 45420775578132979989
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(5*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/((1-x-x^3) * (1-x)^(4*n)).
a(n) ~ 5^(5*n + 5/2) / (99 * sqrt(Pi*n) * 2^(8*n - 1/2)). - Vaclav Kotesovec, Apr 05 2024
a(n) = binomial(5*n, n)*hypergeom([1, (1-n)/3, (2-n)/3, -n/3], [(1-5*n)/2, -5*n/2, 1+4*n], -27/4). - Stefano Spezia, Apr 06 2024

A371872 a(n) = Sum_{k=0..floor(n/3)} binomial(2*n-2*k-1,n-3*k).

Original entry on oeis.org

1, 1, 3, 11, 40, 147, 547, 2055, 7777, 29602, 113204, 434591, 1673821, 6464539, 25026534, 97087873, 377329971, 1468856383, 5726159811, 22351657810, 87350137071, 341726039806, 1338173763288, 5244830032639, 20573285744475, 80761011408961, 317249771957040
Offset: 0

Views

Author

Seiichi Manyama, Apr 10 2024

Keywords

Crossrefs

Programs

  • Maple
    A371872 := proc(n)
        add(binomial(2*n-2*k-1,n-3*k),k=0..floor(n/3)) ;
    end proc:
    seq(A371872(n),n=0..60) ; # R. J. Mathar, Apr 22 2024
  • PARI
    a(n) = sum(k=0, n\3, binomial(2*n-2*k-1, n-3*k));

Formula

a(n) = [x^n] 1/((1-x-x^3) * (1-x)^(n-1)).
D-finite with recurrence +n*a(n) +(-15*n+14)*a(n-1) +3*(27*n-50)*a(n-2) +2*(-93*n+259)*a(n-3) +24*(7*n-26)*a(n-4) +(-69*n+260)*a(n-5) +10*(2*n-9)*a(n-6)=0. - R. J. Mathar, Apr 22 2024

A371755 a(n) = Sum_{k=0..floor(n/3)} binomial(4*n-2*k,n-3*k).

Original entry on oeis.org

1, 4, 28, 221, 1834, 15657, 136137, 1199014, 10661184, 95493145, 860339723, 7788028028, 70777321331, 645359630071, 5901209474518, 54093485799726, 496910913391428, 4573312196055502, 42160889572810597, 389258294230352460, 3598732127428879981
Offset: 0

Views

Author

Seiichi Manyama, Apr 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(4*n-2*k, n-3*k));

Formula

a(n) = [x^n] 1/((1-x-x^3) * (1-x)^(3*n)).
a(n) ~ 2^(8*n + 9/2) / (47 * sqrt(Pi*n) * 3^(3*n - 1/2)). - Vaclav Kotesovec, Apr 05 2024
Previous Showing 11-20 of 21 results. Next