A146290
Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A061394(n)), giving the number of divisors of A025487(n) with m distinct prime factors.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 1, 4, 1, 4, 3, 1, 3, 3, 1, 1, 5, 1, 4, 4, 1, 5, 4, 1, 4, 5, 2, 1, 6, 1, 5, 6, 1, 6, 5, 1, 5, 7, 3, 1, 7, 1, 6, 8, 1, 5, 8, 4, 1, 7, 6, 1, 4, 6, 4, 1, 1, 6, 9, 1, 6, 9, 4, 1, 8, 1, 7, 10, 1, 6, 11, 6, 1, 8, 7, 1, 5, 9, 7, 2, 1, 7, 12, 1, 7, 11, 5, 1, 9, 1, 8, 12, 1, 7, 14
Offset: 1
Rows begin:
1;
1,1;
1,2;
1,2,1;
1,3;
1,3,2;
1,4;
1,4,3;...
36's 9 divisors include 1 divisor with 0 distinct prime factors (1); 4 with 1 (2, 3, 4 and 9); and 4 with 2 (6, 12, 18 and 36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 4, 4). These are the positive coefficients of the polynomial equation 1 + 4k + 4k^2 = (1 + 2k)(1 + 2k), derived from the prime factorization of 36 (namely, 2^2*3^2).
For the number of distinct prime factors of n, see
A001221.
A181567
Triangle read by rows: T(n,k) is coefficient of k-th power in expansion of ((x^(n+1)-1)/(x-1))^n.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 10, 12, 12, 10, 6, 3, 1, 1, 4, 10, 20, 35, 52, 68, 80, 85, 80, 68, 52, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780, 780, 735, 651, 540, 420, 305, 205, 126, 70, 35, 15, 5, 1, 1, 6, 21, 56, 126, 252, 462, 786, 1251
Offset: 0
Rows begin:
1;
1,1;
1,2,3,2,1;
1,3,6,10,12,12,10,6,3,1;...
T(n=3,k=4) = 12 because we have 12 submultisets (without regard of the order of elements) of size k=4 for the regular multiset (n=3) {1, 1, 1, 2, 2, 2, 3, 3, 3}: {1, 1, 1, 2}, {1, 1, 1, 3}, {1, 1, 2, 2}, {1, 1, 2, 3}, {1, 1, 3, 3}, {1, 2, 2, 2}, {1, 2, 2, 3}, {1, 2, 3, 3}, {1, 3, 3, 3}, {2, 2, 2, 3}, {2, 2, 3, 3}, {2, 3, 3, 3}.
-
b:= proc(n, k, i) option remember; `if`(k=0, 1,
`if`(i<1, 0, add(b(n, k-j, i-1), j=0..n)))
end:
T:= (n, k)-> b(n, k, n):
seq(seq(T(n, k), k=0..n^2), n=0..8); # Alois P. Heinz, Jul 04 2016
-
row[n_] := CoefficientList[((x^(n+1) - 1)/(x-1))^n + O[x]^(n^2+1), x]; Table[row[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Apr 06 2017 *)
A343662
Irregular triangle read by rows where T(n,k) is the number of strict length k chains of divisors of n, 0 <= k <= Omega(n) + 1.
Original entry on oeis.org
1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 4, 5, 2, 1, 2, 1, 1, 4, 6, 4, 1, 1, 3, 3, 1, 1, 4, 5, 2, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 4, 5, 2, 1, 4, 5, 2, 1, 5, 10, 10, 5, 1, 1, 2, 1, 1, 6, 12, 10, 3, 1, 2, 1, 1, 6, 12, 10, 3, 1, 4, 5, 2, 1, 4, 5, 2
Offset: 1
Triangle begins:
1: 1 1
2: 1 2 1
3: 1 2 1
4: 1 3 3 1
5: 1 2 1
6: 1 4 5 2
7: 1 2 1
8: 1 4 6 4 1
9: 1 3 3 1
10: 1 4 5 2
11: 1 2 1
12: 1 6 12 10 3
13: 1 2 1
14: 1 4 5 2
15: 1 4 5 2
16: 1 5 10 10 5 1
For example, row n = 12 counts the following chains:
() (1) (2/1) (4/2/1) (12/4/2/1)
(2) (3/1) (6/2/1) (12/6/2/1)
(3) (4/1) (6/3/1) (12/6/3/1)
(4) (4/2) (12/2/1)
(6) (6/1) (12/3/1)
(12) (6/2) (12/4/1)
(6/3) (12/4/2)
(12/1) (12/6/1)
(12/2) (12/6/2)
(12/3) (12/6/3)
(12/4)
(12/6)
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A097805 counts compositions by sum and length.
A122651 counts strict chains of divisors summing to n.
A146291 counts divisors of n with k prime factors (with multiplicity).
A163767 counts length n - 1 chains of divisors of n.
A167865 counts strict chains of divisors > 1 summing to n.
A337070 counts strict chains of divisors starting with superprimorials.
Cf.
A002033,
A007425,
A007426,
A051026,
A062319,
A143773,
A186972,
A327527,
A337074,
A337105,
A337107,
A343658.
-
Table[Length[Select[Reverse/@Subsets[Divisors[n],{k}],And@@Divisible@@@Partition[#,2,1]&]],{n,15},{k,0,PrimeOmega[n]+1}]
A146292
Triangle T(n,m) read by rows (n >= 1, 0 <= m <= A036041(n)), giving the number of divisors of A025487(n) with m prime factors (counted with multiplicity).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 1, 1, 3, 5, 5, 3, 1, 1, 2, 2, 2, 2
Offset: 1
Rows begin:
1;
1,1;
1,1,1;
1,2,1;
1,1,1,1;
1,2,2,1;
1,1,1,1,1;...
36's 9 divisors include 1 divisor with 0 total prime factors (1);, 2 with 1 (2 and 3); 3 with 2 (4, 6 and 9); 2 with 3 (12 and 18); and 1 with 4 (36). Since 36 = A025487(11), the 11th row of the table therefore reads (1, 2, 3, 2, 1). These are the positive coefficients of the polynomial 1 + 2k + 3k^2 + 2k^3 + (1)k^4 = (1 + k + k^2)(1 + k + k^2), derived from the prime factorization of 36 (namely, 2^2*3^2).
For the number of prime factors of n counted with multiplicity, see
A001222.
A336498
Irregular triangle read by rows where T(n,k) is the number of divisors of n! with k prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 3, 5, 6, 6, 5, 3, 1, 1, 4, 8, 11, 12, 11, 8, 4, 1, 1, 4, 8, 11, 12, 12, 12, 12, 11, 8, 4, 1, 1, 4, 8, 12, 16, 19, 20, 20, 19, 16, 12, 8, 4, 1, 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1
Offset: 0
Triangle begins:
1
1
1 1
1 2 1
1 2 2 2 1
1 3 4 4 3 1
1 3 5 6 6 5 3 1
1 4 8 11 12 11 8 4 1
1 4 8 11 12 12 12 12 11 8 4 1
1 4 8 12 16 19 20 20 19 16 12 8 4 1
Row n = 6 counts the following divisors:
1 2 4 8 16 48 144 720
3 6 12 24 72 240
5 9 18 36 80 360
10 20 40 120
15 30 60 180
45 90
Row n = 7 counts the following divisors:
1 2 4 8 16 48 144 720 5040
3 6 12 24 72 240 1008
5 9 18 36 80 336 1680
7 10 20 40 112 360 2520
14 28 56 120 504
15 30 60 168 560
21 42 84 180 840
35 45 90 252 1260
63 126 280
70 140 420
105 210 630
315
A008302 is the version for superprimorials.
A022559 gives row lengths minus one.
A146291 is the generalization to non-factorials.
A336415 counts uniform divisors of n!.
Factorial numbers:
A002982,
A007489,
A048656,
A054991,
A071626,
A325272,
A325617,
A336414,
A336415,
A336416,
A336418.
-
Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&]],{n,0,10},{k,0,PrimeOmega[n!]}]
A343657
Sum of number of divisors of x^y for each x >= 1, y >= 0, x + y = n.
Original entry on oeis.org
1, 2, 4, 7, 12, 18, 27, 39, 56, 77, 103, 134, 174, 223, 283, 356, 445, 547, 666, 802, 959, 1139, 1344, 1574, 1835, 2128, 2454, 2815, 3213, 3648, 4126, 4653, 5239, 5888, 6608, 7407, 8298, 9288, 10385, 11597, 12936, 14408, 16025, 17799, 19746, 21882, 24221
Offset: 1
The a(7) = 27 divisors:
1 32 81 64 25 6 1
16 27 32 5 3
8 9 16 1 2
4 3 8 1
2 1 4
1 2
1
Antidiagonal row sums (row sums of the triangle) of
A343656.
A007318(n,k) counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481(n,k) counts k-multisets of elements of {1..n}.
A343658(n,k) counts k-multisets of divisors of n.
Cf.
A000169,
A000272,
A002064,
A002109,
A048691,
A062319,
A066959,
A143773,
A146291,
A176029,
A251683,
A282935,
A326358,
A327527,
A334996.
-
Total/@Table[DivisorSigma[0,k^(n-k)],{n,30},{k,n}]
A336499
Irregular triangle read by rows where T(n,k) is the number of divisors of n! with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 0, 1, 2, 1, 2, 1, 1, 3, 1, 3, 2, 0, 1, 3, 2, 5, 3, 3, 2, 1, 1, 4, 2, 7, 4, 4, 3, 2, 0, 1, 4, 2, 7, 4, 5, 7, 7, 6, 3, 2, 0, 1, 4, 2, 8, 8, 9, 10, 11, 11, 7, 8, 5, 2, 0, 1, 4, 3, 11, 8, 11, 16, 16, 15, 15, 15, 13, 9, 6, 3, 1, 1, 5, 3, 14, 10, 13, 21, 21, 20, 19, 21, 18, 13, 9, 5, 2, 0
Offset: 0
Triangle begins:
1
1
1 1
1 2 0
1 2 1 2 1
1 3 1 3 2 0
1 3 2 5 3 3 2 1
1 4 2 7 4 4 3 2 0
1 4 2 7 4 5 7 7 6 3 2 0
1 4 2 8 8 9 10 11 11 7 8 5 2 0
1 4 3 11 8 11 16 16 15 15 15 13 9 6 3 1
1 5 3 14 10 13 21 21 20 19 21 18 13 9 5 2 0
1 5 3 14 10 14 25 23 27 24 30 28 28 25 20 16 11 5 2 0
Row n = 7 counts the following divisors:
1 2 4 8 16 48 144 720 {}
3 9 12 24 72 360 1008
5 18 40 80 504
7 20 56 112
28
45
63
A022559 gives row lengths minus one.
A056172 appears to be column k = 2.
A336420 is the version for superprimorials.
A336498 is the version counting all divisors.
A336865 is the generalization to non-factorials.
A336866 lists indices of rows with a final 1.
A336867 lists indices of rows with a final 0.
A336868 gives the final terms in each row.
A000110 counts divisors of superprimorials with distinct prime exponents.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime exponents.
A181796 counts divisors with distinct prime exponents.
A327498 gives the maximum divisor of n with distinct prime exponents.
-
Table[Length[Select[Divisors[n!],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,0,6},{k,0,PrimeOmega[n!]}]
A343935
Number of ways to choose a multiset of n divisors of n.
Original entry on oeis.org
1, 3, 4, 15, 6, 84, 8, 165, 55, 286, 12, 6188, 14, 680, 816, 4845, 18, 33649, 20, 53130, 2024, 2300, 24, 2629575, 351, 3654, 4060, 237336, 30, 10295472, 32, 435897, 7140, 7770, 8436, 177232627, 38, 10660, 11480, 62891499, 42, 85900584, 44, 1906884, 2118760
Offset: 1
The a(1) = 1 through a(5) = 6 multisets:
{1} {1,1} {1,1,1} {1,1,1,1} {1,1,1,1,1}
{1,2} {1,1,3} {1,1,1,2} {1,1,1,1,5}
{2,2} {1,3,3} {1,1,1,4} {1,1,1,5,5}
{3,3,3} {1,1,2,2} {1,1,5,5,5}
{1,1,2,4} {1,5,5,5,5}
{1,1,4,4} {5,5,5,5,5}
{1,2,2,2}
{1,2,2,4}
{1,2,4,4}
{1,4,4,4}
{2,2,2,2}
{2,2,2,4}
{2,2,4,4}
{2,4,4,4}
{4,4,4,4}
Choosing n divisors of n - 1 gives
A343936.
The version for chains of divisors is
A343939.
A007318 counts k-sets of elements of {1..n}.
A009998 = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
A146291 counts divisors of n with k prime factors (with multiplicity).
A253249 counts nonempty chains of divisors of n.
Strict chains of divisors:
-
A067824 counts strict chains of divisors starting with n.
-
A074206 counts strict chains of divisors from n to 1.
-
A251683 counts strict length k + 1 chains of divisors from n to 1.
-
A334996 counts strict length-k chains of divisors from n to 1.
-
A337255 counts strict length-k chains of divisors starting with n.
-
A337256 counts strict chains of divisors of n.
-
A343662 counts strict length-k chains of divisors.
-
multchoo[n_,k_]:=Binomial[n+k-1,k];
Table[multchoo[DivisorSigma[0,n],n],{n,25}]
-
from math import comb
from sympy import divisor_count
def A343935(n): return comb(divisor_count(n)+n-1,n) # Chai Wah Wu, Jul 05 2024
A336865
Irregular triangle read by rows where T(n,k) is the number of divisors of n with distinct prime multiplicities and a total of k prime factors, counted with multiplicity.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 0, 0
Offset: 1
The triangle begins as follows. The n-th row is shown to the right of "n:".
1: (1) 16: (1,1,1,1,1) 31: (1,1)
2: (1,1) 17: (1,1) 32: (1,1,1,1,1,1)
3: (1,1) 18: (1,2,1,1) 33: (1,2,0)
4: (1,1,1) 19: (1,1) 34: (1,2,0)
5: (1,1) 20: (1,2,1,1) 35: (1,2,0)
6: (1,2,0) 21: (1,2,0) 36: (1,2,2,2,0)
7: (1,1) 22: (1,2,0) 37: (1,1)
8: (1,1,1,1) 23: (1,1) 38: (1,2,0)
9: (1,1,1) 24: (1,2,1,2,1) 39: (1,2,0)
10: (1,2,0) 25: (1,1,1) 40: (1,2,1,2,1)
11: (1,1) 26: (1,2,0) 41: (1,1)
12: (1,2,1,1) 27: (1,1,1,1) 42: (1,3,0,0)
13: (1,1) 28: (1,2,1,1) 43: (1,1)
14: (1,2,0) 29: (1,1) 44: (1,2,1,1)
15: (1,2,0) 30: (1,3,0,0) 45: (1,2,1,1)
Row n = 72 counts the following divisors:
1 2 4 8 24 72
3 9 12
18
Row n = 1200 counts the following divisors:
1 2 4 8 16 48 400 1200
3 25 12 24 80 600
5 20 40 200
50
75
A130092 gives positions of rows ending with 0.
A146291 is the version not requiring distinct prime multiplicities.
A336499 is the restriction to factorial numbers.
A001222 counts prime factors, counting multiplicity.
A008302 counts divisors of superprimorials by number of prime factors.
A130091 lists numbers with distinct prime multiplicities.
A181796 counts divisors with distinct prime multiplicities.
A327498 gives the maximum divisor of n with distinct prime multiplicities.
-
Table[Length[Select[Divisors[n],PrimeOmega[#]==k&&UnsameQ@@Last/@FactorInteger[#]&]],{n,20},{k,0,PrimeOmega[n]}]
A343661
Sum of numbers of y-multisets of divisors of x for each x >= 1, y >= 0, x + y = n.
Original entry on oeis.org
1, 2, 4, 7, 12, 19, 30, 46, 70, 105, 155, 223, 316, 443, 619, 865, 1210, 1690, 2354, 3263, 4497, 6157, 8368, 11280, 15078, 19989, 26296, 34356, 44626, 57693, 74321, 95503, 122535, 157101, 201377, 258155, 330994, 424398, 544035, 696995, 892104, 1140298, 1455080
Offset: 1
The a(5) = 12 multisets of divisors:
{1,1,1,1} {1,1,1} {1,1} {1} {}
{1,1,2} {1,3} {2}
{1,2,2} {3,3} {4}
{2,2,2}
Antidiagonal sums of the array
A343658 (or row sums of the triangle).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.
Cf.
A000169,
A000312,
A009998,
A062319,
A067824,
A143773,
A146291,
A176029,
A184389,
A285572,
A326077,
A327527,
A334996,
A343652,
A343657.
-
multchoo[n_,k_]:=Binomial[n+k-1,k];
Table[Sum[multchoo[DivisorSigma[0,k],n-k],{k,n}],{n,10}]
Comments