cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A238167 Decimal expansion of sum_(n>=1) H(n,3)/n^5 where H(n,3) = A007408(n)/A007409(n) is the n-th harmonic number of order 3.

Original entry on oeis.org

1, 0, 4, 6, 9, 2, 4, 4, 0, 1, 7, 2, 4, 6, 7, 6, 0, 8, 2, 3, 4, 5, 7, 2, 3, 0, 1, 4, 2, 2, 2, 7, 9, 2, 3, 2, 9, 6, 1, 9, 5, 9, 8, 4, 0, 2, 2, 6, 4, 1, 4, 7, 7, 1, 4, 7, 4, 8, 3, 3, 2, 5, 0, 9, 5, 0, 5, 1, 8, 3, 8, 4, 4, 2, 2, 8, 2, 0, 1, 1, 1, 9, 0, 0, 1, 7, 8, 1, 8, 5, 1, 8, 6, 0, 3, 0, 7, 7, 9, 7
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.046924401724676082345723014222792329619598402264...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[5*Zeta[2]*Zeta[5] +2*Zeta[3]*Zeta[4] -10*Zeta[7],10,100][[1]]
  • PARI
    5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 10*zeta(7) \\ G. C. Greubel, Dec 30 2017

Formula

Equals 5*zeta(2)*zeta(5) + 2*zeta(3)*zeta(4) - 10*zeta(7).

A238169 Decimal expansion of sum_(n>=1) H(n)^3/n^4 where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 3, 8, 1, 4, 6, 8, 3, 1, 0, 5, 0, 3, 8, 5, 2, 3, 7, 3, 0, 0, 4, 7, 8, 5, 1, 2, 0, 4, 0, 6, 6, 2, 2, 6, 9, 9, 9, 3, 3, 4, 4, 3, 5, 6, 3, 9, 0, 5, 3, 6, 1, 6, 9, 1, 0, 0, 0, 0, 8, 5, 3, 3, 0, 9, 5, 3, 8, 7, 2, 4, 2, 2, 3, 7, 7, 7, 5, 8, 4, 6, 7, 2, 9, 5, 9, 9, 3, 2, 6, 4, 5, 0, 9, 3, 0, 5, 7, 4, 1
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.38146831050385237300478512040662269993...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(231/16)*Zeta[7] - (51/4)*Zeta[3]*Zeta[4] + 2*Zeta[2]*Zeta[5], 10, 100][[1]] (* G. C. Greubel, Dec 30 2017 *)
  • PARI
    (231/16)*zeta(7) - (51/4)*zeta(3)*zeta(4) + 2*zeta(2)*zeta(5) \\ G. C. Greubel, Dec 30 2017

Formula

Equals (231/16)*Zeta(7) - (51/4)*Zeta(3)*Zeta(4) + 2*Zeta(2)*Zeta(5).

A304407 If n = Product (p_j^k_j) then a(n) = Product ((p_j - 1)*k_j).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 6, 3, 4, 4, 10, 4, 12, 6, 8, 4, 16, 4, 18, 8, 12, 10, 22, 6, 8, 12, 6, 12, 28, 8, 30, 5, 20, 16, 24, 8, 36, 18, 24, 12, 40, 12, 42, 20, 16, 22, 46, 8, 12, 8, 32, 24, 52, 6, 40, 18, 36, 28, 58, 16, 60, 30, 24, 6, 48, 20, 66, 32, 44, 24, 70, 12, 72, 36, 16
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(60) = a(2^2*3*5) = (2 - 1)*2 * (3 - 1)*1 * (5 - 1)*1 = 16.
		

Crossrefs

Programs

  • Maple
    seq(mul((p-1)*padic[ordp](n, p), p in numtheory[factorset](n)), n=1..100); # Ridouane Oudra, Jun 06 2025
  • Mathematica
    a[n_] := Times @@ ((#[[1]] - 1) #[[2]] & /@ FactorInteger[n]); a[1] = 1; Table[a[n], {n, 75}]
    Table[EulerPhi[Last[Select[Divisors[n], SquareFreeQ]]] DivisorSigma[0, n/Last[Select[Divisors[n], SquareFreeQ]]], {n, 75}]
  • PARI
    a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i,1], e=f[i,2]); (p-1)*e)} \\ Andrew Howroyd, Jul 24 2018

Formula

a(n) = A005361(n)*abs(A023900(n)) = A005361(n)*A173557(n) = A005361(n)*A000010(A007947(n)).
a(p^k) = (p - 1)*k where p is a prime and k > 0.
a(n) = phi(n) if n is a squarefree (A005117), where phi() = A000010.
a(A002110(k)) = A005867(k).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - 4/p^2 + 3/p^3 + 1/p^4 - 1/p^5) = 0.2644703894... . - Amiram Eldar, Nov 30 2022
a(n) = (-1)^A001221(n) * (Sum_{d1|n} Sum_{d2|n} mu(d1)*gcd(d1,d2)). - Ridouane Oudra, Jun 06 2025

A158274 Numerators of antiharmonic means of divisors of n.

Original entry on oeis.org

1, 5, 5, 3, 13, 25, 25, 17, 7, 65, 61, 15, 85, 125, 65, 11, 145, 35, 181, 13, 125, 305, 265, 85, 21, 425, 41, 75, 421, 325, 481, 65, 305, 725, 325, 21, 685, 181, 425, 221, 841, 625, 925, 61, 91, 1325, 1105, 55, 43, 35
Offset: 1

Views

Author

Jaroslav Krizek, Mar 15 2009

Keywords

Comments

Numbers k such that sigma_2(k)/sigma_1(k) = A001157(k)/A000203(k) are integers are in A020487.

Examples

			Antiharmonic means of divisors of n>=1: 1, 5/3, 5/2, 3, 13/2, 25/6, ...
		

Crossrefs

Cf. A000203, A001157, A020487, A065473, A152649, A158275 (denominators)

Programs

  • Mathematica
    Table[Numerator[DivisorSigma[2, n]/DivisorSigma[1, n]], {n, 50}] (* Ivan Neretin, May 22 2015 *)
  • PARI
    a(n) = numerator(sigma(n,2)/sigma(n)); \\ Amiram Eldar, Nov 21 2022

Formula

Antiharmonic mean of divisors of number n = Product (p_i^e_i) is sigma_2(n)/sigma_1(n) = A001157(n)/A000203(n) = Product ((p_i^(e_i+1)+1)/(p_i+1)).
Sum_{k=1..n} a(k)/A158275(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (3*p-2)/(p^3)) = A152649 * A065473 = 0.387941... . - Amiram Eldar, Nov 21 2022

A145398 a(n) = Sum_{d|n} sigma(d) - Sum_{2c|n} sigma(c) + 4*Sum_{4b|n} sigma(b).

Original entry on oeis.org

1, 3, 5, 11, 7, 15, 9, 31, 18, 21, 13, 55, 15, 27, 35, 75, 19, 54, 21, 77, 45, 39, 25, 155, 38, 45, 58, 99, 31, 105, 33, 167, 65, 57, 63, 198, 39, 63, 75, 217, 43, 135, 45, 143, 126, 75, 49, 375, 66, 114, 95, 165, 55, 174, 91, 279, 105, 93, 61, 385, 63, 99, 162, 355, 105, 195
Offset: 1

Views

Author

N. J. A. Sloane, Mar 13 2009

Keywords

Comments

Dirichlet convolution of [1,-1,0,4,0,0,...] with A007429.

Crossrefs

Programs

  • Maple
    read("transforms") ;  s1 := [1,-1,0,4,seq(0,n=1..40)] ; s2 := [seq(add(sigma(d),d=divisors(n)),n=1..40)] ; DIRICHLET(s1,s2) ; # R. J. Mathar, Feb 07 2011
  • Mathematica
    f[p_, e_] := (p*(p^(e + 1) - 1) - (p - 1)*(e + 1))/(p - 1)^2; f[2, e_] := 3*2^(e + 1) - 4*e - 5; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 25 2022 *)
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,1] == 2, 3*2^(f[i,2]+1) - 4*f[i,2] - 5,  (f[i,1]*(f[i,1]^(f[i,2]+1)-1) - (f[i,1]-1)*(f[i,2]+1))/(f[i,1]-1)^2)); } \\ Amiram Eldar, Oct 25 2022

Formula

Dirichlet g.f.: (1-1/2^s+4/4^s)*(zeta(s))^2*zeta(s-1).
From Amiram Eldar, Oct 25 2022: (Start):
Multiplicative with a(2^e) = 3*2^(e+1)-4*e-5, and a(p^e) = (p*(p^(e+1)-1) - (p-1)*(e+1))/(p-1)^2 if p > 2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^4/72 = 1.352904... (A152649). (End)

A238183 Decimal expansion of sum_(n>=1) H(n)^2/n^7 where H(n) is the n-th harmonic number (Quadratic Euler Sum S(2,7)).

Original entry on oeis.org

1, 0, 1, 9, 4, 8, 3, 4, 9, 7, 4, 9, 4, 3, 8, 2, 2, 8, 6, 2, 0, 6, 4, 9, 6, 6, 7, 5, 9, 2, 8, 1, 2, 6, 5, 1, 5, 0, 6, 1, 8, 9, 4, 4, 2, 2, 9, 0, 4, 2, 8, 8, 8, 6, 3, 3, 3, 4, 0, 1, 4, 6, 3, 1, 6, 1, 9, 8, 5, 3, 7, 4, 0, 0, 6, 8, 7, 3, 5, 5, 5, 0, 0, 2, 7, 3, 1, 4, 6, 2, 1, 0, 0, 3, 1, 6, 6, 5, 5, 3
Offset: 1

Views

Author

Jean-François Alcover, Feb 19 2014

Keywords

Examples

			1.019483497494382286206496675928126515...
		

Crossrefs

Programs

  • Mathematica
    Zeta[3]^3/3 - 5/2*Zeta[4]*Zeta[5] - 7/2*Zeta[3]*Zeta[6] - Zeta[2]*Zeta[7] + 55/6*Zeta[9] // RealDigits[#, 10, 100]& // First

Formula

zeta(3)^3/3-5/2*zeta(4)*zeta(5)-7/2*zeta(3)*zeta(6)-zeta(2)*zeta(7)+55/6*zeta(9).

A233033 Decimal expansion of sum_(n=1..infinity) (-1)^(n-1)*H(n)/n^3 where H(n) is the n-th harmonic number.

Original entry on oeis.org

8, 5, 9, 2, 4, 7, 1, 5, 7, 9, 2, 8, 5, 9, 0, 6, 1, 5, 5, 3, 9, 9, 0, 9, 9, 3, 9, 4, 7, 5, 7, 5, 9, 9, 8, 0, 7, 1, 2, 8, 8, 4, 3, 5, 0, 8, 6, 0, 4, 1, 4, 9, 2, 6, 7, 6, 0, 5, 2, 0, 6, 8, 9, 7, 6, 6, 3, 8, 3, 4, 8, 1, 5, 3, 3, 4, 8, 9, 2, 3, 3, 0, 7, 1, 1, 3, 8, 8, 3, 8, 1, 5, 1, 8, 8, 4, 3, 0, 6, 0
Offset: 0

Views

Author

Jean-François Alcover, Dec 03 2013

Keywords

Examples

			0.859247157928590615539909939475759980712884350860414926760520689766...
		

Crossrefs

Cf. A076788 (same alternating sum with denominator n), A152648 (non-alternating sum with denominator n^2), A152649 (non-alternating sum with denominator n^3).

Programs

  • Mathematica
    RealDigits[ 11*Pi^4/360 + 1/12*Pi^2*Log[2]^2 - Log[2]^4/12 - 2*PolyLog[4, 1/2] - 7/4*Log[2]*Zeta[3], 10, 100] // First
  • PARI
    11*Pi^4/360 + Pi^2*log(2)^2/12 - log(2)^4/12 - 2*polylog(4, 1/2) - 7*log(2)*zeta(3)/4 \\ Charles R Greathouse IV, Aug 27 2014

Formula

Equals 11*Pi^4/360 +1/12*Pi^2*log(2)^2 -log(2)^4/12 -2*Li4(1/2) -7/4*log(2)*zeta(3).
Also, equals 1/2*integral_{z=0..1} (log(z)^2*log(1+z)) / (z*(1+z)) dz.

A333645 a(n) = Sum_{d|n} uphi(d).

Original entry on oeis.org

1, 2, 3, 5, 5, 6, 7, 12, 11, 10, 11, 15, 13, 14, 15, 27, 17, 22, 19, 25, 21, 22, 23, 36, 29, 26, 37, 35, 29, 30, 31, 58, 33, 34, 35, 55, 37, 38, 39, 60, 41, 42, 43, 55, 55, 46, 47, 81, 55, 58, 51, 65, 53, 74, 55, 84, 57, 58, 59, 75, 61, 62, 77, 121, 65, 66, 67, 85, 69, 70
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 31 2020

Keywords

Comments

Inverse Moebius transform of A047994.

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (#[[1]]^#[[2]] - 1 & /@ FactorInteger[n]); a[n_] := Sum[uphi[d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
    A023900[n_] := Sum[MoebiusMu[d] d, {d, Divisors[n]}]; A062949[n_] := Sum[EulerPhi[d] DivisorSigma[0, d], {d, Divisors[n]}]; a[n_] := Sum[A023900[d] A062949[n/d], {d, Divisors[n]}]; Table[a[n], {n, 70}]
    f[p_,e_] := (p^(e+1) - e*p + e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a,100] (* Amiram Eldar, Nov 12 2022 *)
  • PARI
    uphi(n)=my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
    a(n) = sumdiv(n, d, uphi(d)); \\ Michel Marcus, Mar 31 2020

Formula

G.f.: Sum_{k>=1} uphi(k) * x^k / (1 - x^k).
a(n) = Sum_{d|n} A023900(d) * A062949(n/d).
From Amiram Eldar, Nov 12 2022: (Start)
Multiplicative with a(p^e) = (p^(e+1) - e*p + e - 1)/(p-1).
Sum_{k=1..n} a(k) ~ c * n^2, where c = (Pi^4/72) * Product_{p prime} (1 - (2*p-1)/p^3) = A152649 * A065464 = 0.5793804872... . (End)

A241215 Decimal expansion of Sum_{n>=1} H(n)^4/(n+1)^3 where H(n) is the n-th harmonic number.

Original entry on oeis.org

1, 8, 0, 1, 6, 1, 3, 2, 6, 8, 0, 4, 3, 4, 1, 2, 9, 0, 3, 7, 2, 9, 4, 8, 8, 9, 4, 2, 0, 2, 0, 8, 8, 8, 4, 3, 0, 3, 1, 3, 7, 7, 5, 8, 2, 7, 7, 8, 7, 8, 9, 3, 3, 0, 0, 8, 7, 3, 3, 9, 4, 9, 2, 5, 4, 8, 0, 4, 4, 4, 8, 1, 8, 8, 4, 0, 8, 9, 3, 3, 3, 7, 5, 3, 0, 9, 4, 5, 7, 4, 3, 3, 0, 4, 2, 7, 1, 9, 3, 1
Offset: 1

Views

Author

Jean-François Alcover, Apr 17 2014

Keywords

Examples

			1.80161326804341290372948894202088843...
		

Crossrefs

Programs

  • Mathematica
    37/180*Pi^4*Zeta[3] - 5/6*Pi^2*Zeta[5] - 109/8*Zeta[7] // RealDigits[#, 10, 100]& // First
  • PARI
    37/2*zeta(3)*zeta(4) - 5*zeta(2)*zeta(5) - 109/8*zeta(7) \\ Stefano Spezia, Jan 19 2025

Formula

Equals (37/2)*zeta(3)*zeta(4) - 5*zeta(2)*zeta(5) - (109/8)*zeta(7).
Equals (37/180)*Pi^4*zeta(3) - (5/6)*Pi^2*zeta(5) - (109/8)*zeta(7).

A384457 Decimal expansion of Sum_{k>=1} H(k)^3/2^k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number.

Original entry on oeis.org

3, 5, 9, 3, 4, 2, 7, 9, 4, 1, 7, 7, 4, 9, 4, 2, 9, 6, 0, 2, 5, 5, 1, 8, 2, 4, 0, 7, 0, 3, 3, 3, 9, 2, 1, 9, 5, 9, 1, 6, 9, 5, 4, 8, 0, 3, 5, 1, 9, 3, 3, 8, 9, 3, 7, 6, 9, 7, 3, 8, 6, 1, 1, 9, 1, 8, 8, 8, 2, 8, 1, 2, 6, 9, 6, 1, 9, 2, 6, 3, 4, 0, 3, 7, 3, 9, 5, 7, 8, 6, 7, 6, 8, 6, 4, 7, 4, 5, 8, 7, 3, 5, 5, 3, 7
Offset: 1

Views

Author

Amiram Eldar, May 30 2025

Keywords

Examples

			3.59342794177494296025518240703339219591695480351933...
		

References

  • K. Ramachandra and R. Sitaramachandrarao, On series, integrals and continued fractions - II, Madras Univ. J., Sect. B, 51 (1988), pp. 181-198.

Crossrefs

Programs

  • Mathematica
    RealDigits[Zeta[3] + (Pi^2*Log[2] + Log[2]^3)/3, 10, 120][[1]]
  • PARI
    zeta(3) + (Pi^2*log(2) + log(2)^3)/3

Formula

Equals zeta(3) + (Pi^2*log(2) + log(2)^3)/3.
Previous Showing 11-20 of 25 results. Next