cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A194275 Concentric pentagonal numbers of the second kind: a(n) = floor(5*n*(n+1)/6).

Original entry on oeis.org

0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, 110, 130, 151, 175, 200, 226, 255, 285, 316, 350, 385, 421, 460, 500, 541, 585, 630, 676, 725, 775, 826, 880, 935, 991, 1050, 1110, 1171, 1235, 1300, 1366, 1435, 1505, 1576, 1650, 1725, 1801, 1880, 1960, 2041, 2125
Offset: 0

Views

Author

Omar E. Pol, Aug 20 2011

Keywords

Comments

Quasipolynomial: trisections are (15*x^2 - 15*x + 2)/2, 5*(15*x^2 - 5*x)/2, and 5*(15*x^2 + 5*x)/2. - Charles R Greathouse IV, Aug 23 2011
Appears to be similar to cellular automaton. The sequence gives the number of elements in the structure after n-th stage. Positive integers of A008854 gives the first differences. For a definition without words see the illustration of initial terms in the example section.
Also partial sums of A008854.
Also row sums of an infinite square array T(n,k) in which column k lists 3*k-1 zeros followed by the numbers A008706 (see example).
For concentric pentagonal numbers see A032527. - Omar E. Pol, Sep 27 2011

Examples

			Using the numbers A008706 we can write:
0, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, ...
0, 0, 0,  0,  1,  5, 10, 15, 20, 25, 30, ...
0, 0, 0,  0,  0,  0,  0,  1,  5, 10, 15, ...
0, 0, 0,  0,  0,  0,  0,  0,  0,  0,  1, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 5, 10, 16, 25, 35, 46, 60, 75, 91, ...
...
Illustration of initial terms (in a precise representation the pentagons should appear strictly concentric):
.                                             o
.                                           o   o
.                            o            o       o
.                          o   o        o     o     o
.               o        o       o    o     o   o     o
.             o   o    o     o     o   o     o o     o
.      o    o       o   o         o     o           o
.    o   o   o     o     o       o       o         o
. o   o o     o o o       o o o o         o o o o o
.
. 1    5        10          16                25
		

Crossrefs

Cf. similar sequences with the formula floor(k*n*(n+1)/(k+1)) listed in A281026.

Programs

  • Magma
    [Floor(5*n*(n+1)/6): n in [0..60]]; // Vincenzo Librandi, Sep 27 2011
  • Mathematica
    Table[Floor[5 n (n + 1)/6], {n, 0, 50}] (* Arkadiusz Wesolowski, Oct 03 2011 *)
  • PARI
    a(n)=5*n*(n+1)\6 \\ Charles R Greathouse IV, Aug 23 2011
    

Formula

G.f.: (-1 - 3*x - x^2)/((-1 + x)^3*(1 + x + x^2)). - Alexander R. Povolotsky, Aug 22 2011
a(n) = floor(5*n*(n+1)/6). - Arkadiusz Wesolowski, Aug 23 2011

Extensions

Name improved by Arkadiusz Wesolowski, Aug 23 2011
New name from Omar E. Pol, Sep 28 2011

A164015 5 times centered pentagonal numbers: 5*(5*n^2 + 5*n + 2)/2.

Original entry on oeis.org

5, 30, 80, 155, 255, 380, 530, 705, 905, 1130, 1380, 1655, 1955, 2280, 2630, 3005, 3405, 3830, 4280, 4755, 5255, 5780, 6330, 6905, 7505, 8130, 8780, 9455, 10155, 10880, 11630, 12405, 13205, 14030, 14880, 15755, 16655, 17580, 18530
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5(5n^2+5n+2)/2,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{5,30,80},40] (* Harvey P. Dale, Oct 08 2011 *)
  • PARI
    a(n)=25*n*(n+1)/2+5 \\ Charles R Greathouse IV, Jul 17 2011

Formula

a(n) = 5*A005891(n).
a(n) = a(n-1) + 25*n (with a(0)=5). - Vincenzo Librandi, Nov 30 2010
a(0)=5, a(1)=30, a(2)=80, a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Oct 08 2011
G.f.: (5*(x*(x+3)+1))/(1-x)^3. - Harvey P. Dale, Oct 08 2011
E.g.f.: (5/2)*(2 + 10*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 06 2017

A153780 10 times pentagonal numbers: a(n) = 5*n*(3*n-1).

Original entry on oeis.org

0, 10, 50, 120, 220, 350, 510, 700, 920, 1170, 1450, 1760, 2100, 2470, 2870, 3300, 3760, 4250, 4770, 5320, 5900, 6510, 7150, 7820, 8520, 9250, 10010, 10800, 11620, 12470, 13350, 14260, 15200, 16170, 17170, 18200, 19260, 20350
Offset: 0

Views

Author

Omar E. Pol, Jan 01 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[5*n*(3*n - 1), {n,0,25}] (* or *) LinearRecurrence[{3,-3,1},{0,10,50},25] (* G. C. Greubel, Aug 28 2016 *)
  • PARI
    a(n) = 5*n*(3*n-1); \\ Michel Marcus, Aug 28 2016

Formula

a(n) = 15*n^2 - 5*n = 10*A000326(n) = 5*A049450(n) = 2*A152734(n).
a(n) = 30*n + a(n-1) - 20 for n>0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
G.f.: 10*x*(1+2*x)/(1-x)^3. - Colin Barker, Feb 14 2012
From G. C. Greubel, Aug 28 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: 5*x*(2 + 3*x)*exp(x). (End)
Previous Showing 11-13 of 13 results.