A152734
5 times pentagonal numbers: 5*n*(3*n-1)/2.
Original entry on oeis.org
0, 5, 25, 60, 110, 175, 255, 350, 460, 585, 725, 880, 1050, 1235, 1435, 1650, 1880, 2125, 2385, 2660, 2950, 3255, 3575, 3910, 4260, 4625, 5005, 5400, 5810, 6235, 6675, 7130, 7600, 8085, 8585, 9100, 9630, 10175, 10735, 11310, 11900, 12505, 13125, 13760, 14410
Offset: 0
From _Omar E. Pol_, Aug 22 2011 (Start):
Illustration of initial terms as concentric pentagons (in a precise representation the pentagons should be strictly concentric):
.
. o
. o o
. o o
. o o o o
. o o o o o o
. o o o o o o
. o o o o o o o o o
.o o o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o
. o o o o o o
. o o o o o o o o o o o o
. o o
. o o
. o o o o o o o o
.
. 5 25 60
(End)
Cf. sequences of the form n*(d*n+10-d)/2 indexed in
A140090.
-
[5*n*(3*n-1)/2 : n in [0..50]]; // Wesley Ivan Hurt, Sep 19 2014
-
A152734:=n->5*n*(3*n-1)/2: seq(A152734(n), n=0..50); # Wesley Ivan Hurt, Sep 19 2014
-
Table[5 n (3 n - 1)/2, {n, 0, 50}] (* Wesley Ivan Hurt, Sep 19 2014 *)
5*PolygonalNumber[5,Range[0,50]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 13 2020 *)
-
a(n)=5*n*(3*n-1)/2 \\ Charles R Greathouse IV, Sep 24 2015
A194274
Concentric square numbers (see Comments lines for definition).
Original entry on oeis.org
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, 72, 84, 97, 112, 128, 144, 161, 180, 200, 220, 241, 264, 288, 312, 337, 364, 392, 420, 449, 480, 512, 544, 577, 612, 648, 684, 721, 760, 800, 840, 881, 924, 968, 1012, 1057, 1104, 1152, 1200, 1249, 1300, 1352, 1404
Offset: 0
Using the numbers A008574 we can write:
0, 1, 4, 8, 12, 16, 20, 24, 28, 32, 36, ...
0, 0, 0, 0, 0, 1, 4, 8, 12, 16, 20, ...
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 4, ...
And so on.
===========================================
The sums of the columns give this sequence:
0, 1, 4, 8, 12, 17, 24, 32, 40, 49, 60, ...
...
Illustration of initial terms:
. o o o o o o
. o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
.
. 1 4 8 12 17 24
-
[n le 2 select n-1 else (n-1)^2 - Self(n-2): n in [1..61]]; // G. C. Greubel, Jan 31 2024
-
Table[Floor[3*n/4] + Floor[(n*(n + 2) + 1)/2] - Floor[(3*n + 1)/4], {n, 0, 52}] (* Arkadiusz Wesolowski, Nov 08 2011 *)
RecurrenceTable[{a[0]==0,a[1]==1,a[n]==n^2-a[n-2]},a,{n,60}] (* or *) LinearRecurrence[{3,-4,4,-3,1},{0,1,4,8,12},60] (* Harvey P. Dale, Sep 11 2013 *)
-
prpr = 0
prev = 1
for n in range(2,777):
print(str(prpr), end=", ")
curr = n*n - prpr
prpr = prev
prev = curr
# Alex Ratushnyak, Aug 03 2012
-
def A194274(n): return (3*n>>2)+(n*(n+2)+1>>1)-(3*n+1>>2) # Chai Wah Wu, Jul 15 2023
-
def A194274(n): return n if n<2 else n^2 - A194274(n-2)
[A194274(n) for n in range(41)] # G. C. Greubel, Jan 31 2024
A281026
a(n) = floor(3*n*(n+1)/4).
Original entry on oeis.org
0, 1, 4, 9, 15, 22, 31, 42, 54, 67, 82, 99, 117, 136, 157, 180, 204, 229, 256, 285, 315, 346, 379, 414, 450, 487, 526, 567, 609, 652, 697, 744, 792, 841, 892, 945, 999, 1054, 1111, 1170, 1230, 1291, 1354, 1419, 1485, 1552, 1621, 1692, 1764, 1837, 1912, 1989, 2067, 2146
Offset: 0
Cf. sequences with formula floor(k*n*(n+1)/4):
A011848 (k=1),
A000217 (k=2), this sequence (k=3),
A002378 (k=4).
-
[3*n*(n+1) div 4: n in [0..60]];
-
A281026:=n->floor(3*n*(n+1)/4): seq(A281026(n), n=0..100); # Wesley Ivan Hurt, Jan 13 2017
-
Table[Floor[3 n (n + 1)/4], {n, 0, 60}]
LinearRecurrence[{3,-4,4,-3,1},{0,1,4,9,15},60] (* Harvey P. Dale, Jun 04 2023 *)
-
makelist(floor(3*n*(n+1)/4), n, 0, 60);
-
vector(60, n, n--; floor(3*n*(n+1)/4))
-
[int(3*n*(n+1)/4) for n in range(60)]
-
[floor(3*n*(n+1)/4) for n in range(60)]
A194273
Concentric triangular numbers (see Comments lines for definition).
Original entry on oeis.org
0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55, 63, 72, 81, 90, 99, 109, 120, 132, 144, 156, 168, 181, 195, 210, 225, 240, 255, 271, 288, 306, 324, 342, 360, 379, 399, 420, 441, 462, 483, 505, 528, 552, 576, 600, 624, 649, 675, 702, 729, 756, 783, 811
Offset: 0
Using the numbers A008486 we can write:
0, 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36,...
0, 0, 0, 0, 0, 0, 0, 1, 3, 6, 9, 12, 15, 18,...
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,...
And so on.
=========================================================
The sums of the columns give this sequence:
0, 1, 3, 6, 9, 12, 15, 19, 24, 30, 36, 42, 48, 55,...
...
Illustration of initial terms:
. o
. o o o
. o o o o o
. o o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o o o o o o o o o o
.
. 1 3 6 9 12 15
.
. o
. o o o
. o o o o o
. o o o o o o
. o o o o o o o
. o o o o o o o o o
. o o o o o o o o o o o o
. o o o o o o
. o o o o o o o o o o o o o o o o o o o o o o o o
.
. 19 24 30
A330451
a(n) = a(n-3) + 20*n - 30 for n > 2, with a(0)=0, a(1)=3, a(2)=13.
Original entry on oeis.org
0, 3, 13, 30, 53, 83, 120, 163, 213, 270, 333, 403, 480, 563, 653, 750, 853, 963, 1080, 1203, 1333, 1470, 1613, 1763, 1920, 2083, 2253, 2430, 2613, 2803, 3000, 3203, 3413, 3630, 3853, 4083, 4320, 4563, 4813, 5070
Offset: 0
-
Table[2/9(-1+15n^2+Cos[2n*Pi/3]),{n,0,39}] (* Stefano Spezia, Mar 02 2020 *)
-
concat(0, Vec(x*(1 + x)*(3 + 4*x + 3*x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Mar 02 2020
-
def A330451(n): return 10*n**2//3 # Chai Wah Wu, Aug 12 2025
A281151
a(n) = floor(4*n*(n+1)/5).
Original entry on oeis.org
0, 1, 4, 9, 16, 24, 33, 44, 57, 72, 88, 105, 124, 145, 168, 192, 217, 244, 273, 304, 336, 369, 404, 441, 480, 520, 561, 604, 649, 696, 744, 793, 844, 897, 952, 1008, 1065, 1124, 1185, 1248, 1312, 1377, 1444, 1513, 1584, 1656, 1729, 1804, 1881, 1960, 2040, 2121, 2204, 2289
Offset: 0
Cf.
A184005: n^2 - floor((n-2)^2/4).
-
[4*n*(n+1) div 5: n in [0..60]];
-
Table[Floor[4 n (n + 1)/5], {n, 0, 60}]
-
makelist(floor(4*n*(n+1)/5), n, 0, 60);
-
vector(60, n, n--; floor(4*n*(n+1)/5))
-
[int(4*n*(n+1)/5) for n in range(60)]
-
[floor(4*n*(n+1)/5) for n in range(60)]
Showing 1-6 of 6 results.
Comments