cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A164016 6 times centered hexagonal numbers: 18*n*(n+1) + 6.

Original entry on oeis.org

6, 42, 114, 222, 366, 546, 762, 1014, 1302, 1626, 1986, 2382, 2814, 3282, 3786, 4326, 4902, 5514, 6162, 6846, 7566, 8322, 9114, 9942, 10806, 11706, 12642, 13614, 14622, 15666, 16746, 17862, 19014, 20202, 21426, 22686, 23982, 25314
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2009

Keywords

Crossrefs

Programs

  • Mathematica
    Table[18n(n+1)+6,{n,0,40}] (* or *) LinearRecurrence[{3,-3,1},{6,42,114},40] (* Harvey P. Dale, Dec 16 2012 *)
  • PARI
    a(n)=18*n*(n+1)+6 \\ Charles R Greathouse IV, Jul 17 2011

Formula

a(n) = A003215(n)*6.
a(n) = a(n-1) + 36*n (with a(0)=6). - Vincenzo Librandi, Nov 30 2010
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) with a(0)=6, a(1)=42, a(2)=114. - Harvey P. Dale, Dec 16 2012
From G. C. Greubel, Sep 07 2017: (Start)
G.f.: 6*(1 + 4*x + x^2)/(1 - x)^3.
E.g.f.: 6*(1 + 6*x + 3*x^2)*exp(x). (End)

A331952 a(n) = (-7 + (-1)^(1+n) + 6*n^2) / 8.

Original entry on oeis.org

-1, 0, 2, 6, 11, 18, 26, 36, 47, 60, 74, 90, 107, 126, 146, 168, 191, 216, 242, 270, 299, 330, 362, 396, 431, 468, 506, 546, 587, 630, 674, 720, 767, 816, 866, 918, 971, 1026, 1082, 1140, 1199, 1260, 1322, 1386, 1451, 1518, 1586, 1656, 1727, 1800, 1874, 1950, 2027
Offset: 0

Views

Author

Paul Curtz, Feb 02 2020

Keywords

Comments

a(n+1) is once in the hexagonal spiral in A330707. a(n+2) is twice in the same spiral.
a(n) has one odd followed by three evens.
Difference table:
-1, 0, 2, 6, 11, 18, 26, 36, ... = a(n)
1, 2, 4, 5, 7, 8, 10, 11, ... = A001651(n+1)
1, 2, 1, 2, 1, 2, 1, 2, ... = A000034.

Examples

			G.f. = -1 + 2*x^2 + 6*x^3 + 11*x^4 + 18*x^5 + 26*x^6 + 36*x^7 + 47*x^8 + ... - _Michael Somos_, Sep 08 2023
		

Crossrefs

Equals 2 less than A084684, 1 less than A077043, and 1 more than A276382(n-1). - Greg Dresden, Feb 22 2020

Programs

  • Magma
    a:=[-1,0,2,6]; [n le 4 select a[n] else 2*Self(n-1)-2*Self(n-3)+Self(n-4): n in [1..45]]; // Marius A. Burtea, Feb 02 2020
    
  • Mathematica
    LinearRecurrence[{2, 0, -2, 1}, {-1, 0, 2, 6}, 100] (* Amiram Eldar, Feb 02 2020 *)
    a[n_] := Floor[(n^2 - 1)*3/4]; (* Michael Somos, Sep 08 2023 *)
  • PARI
    Vec(-(1 - 2*x - 2*x^2) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Colin Barker, Feb 03 2020
    
  • PARI
    {a(n) = (n^2 - 1)*3\4}; /* Michael Somos, Sep 08 2023 */

Formula

a(-n) = a(n).
a(20+n) - a(n) = 30*(10+n).
a(2+n) = a(n) + 3*(1+n), a(0)=-1 and a(1)=0.
a(4*n) = 12*n^2 - 1, a(1+4*n) = 6*n*(1+2*n), a(2+4*n) = 2 + 12*n*(1+n), a(3+4*n) = 6*(1+n)*(1+2*n) for n>= 0.
From Colin Barker, Feb 02 2020: (Start)
G.f.: -(1 - 2*x - 2*x^2) / ((1 - x)^3*(1 + x)).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n>3.
a(n) = (-7 + (-1)^(1+n) + 6*n^2) / 8.
(End)
E.g.f.: (1/8)*(exp(x)*(6*x^2 + 6*x - 7) - exp(-x)). - Stefano Spezia, Feb 02 2020 after Colin Barker
a(n) = floor((n^2 - 1)*3/4). - Michael Somos, Sep 09 2023

Extensions

a(42)-a(52) from Stefano Spezia, Feb 02 2020

A386477 a(0) = 1; thereafter a(n) = 2*(6*n^2 - 3*n + 1).

Original entry on oeis.org

1, 8, 38, 92, 170, 272, 398, 548, 722, 920, 1142, 1388, 1658, 1952, 2270, 2612, 2978, 3368, 3782, 4220, 4682, 5168, 5678, 6212, 6770, 7352, 7958, 8588, 9242, 9920, 10622, 11348, 12098, 12872, 13670, 14492, 15338, 16208, 17102, 18020, 18962, 19928, 20918, 21932, 22970, 24032, 25118, 26228, 27362, 28520, 29702, 30908, 32138, 33392, 34670
Offset: 0

Views

Author

Keywords

Comments

Definition: A regular hexagram of radius R is formed by placing six equally-spaced points P_0 .. P_5 around the boundary of a circle of radius R, and drawing line segments P_0 - P_2 - P_4 - P_0 and P_1 - P_3 - P_5 - P_1.
Theorem 1: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular hexagrams with the same radius and the same center.
Conjecture 2: a(n) is the maximum number of regions that can be formed in the plane by drawing n regular hexagrams with any radii and any centers.
The following construction works for any n >= 1. Take 6*n equally-spaced points P_i around a circle, and draw hexagrams starting at P_i for i = 0, ..., n-1.
The resulting planar graph decomposes into 6*n triangular cells each with 2*n-1 cells (see the red triangle in the "Three pentagons" illustration), plus the interior and exterior regions, for a total of 12*n^2 - 6*n + 2 regions. There are 12*n^2 vertices, for n>0.

Crossrefs

See A077588, A069894, and A383466 for analogous sequences based on triangles, squares, and pentagrams.

Programs

  • Mathematica
    A386477[n_] := If[n == 0, 1, 6*n*(2*n - 1) + 2]; Array[A386477, 50, 0] (* or *)
    Join[{1}, 6*PolygonalNumber[6, Range[49]] + 2] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 8, 38, 92}, 50] (* Paolo Xausa, Jul 24 2025 *)

Formula

From Stefano Spezia, Jul 23 2025: (Start)
G.f.: (1 + 5*x + 17*x^2 + x^3)/(1 - x)^3.
E.g.f.: 2*exp(x)*(1 + 3*x + 6*x^2) - 1. (End)
a(n) = A152746(n) + 2, for n >= 1. - Paolo Xausa, Jul 24 2025

A277980 a(n) = 12*n^2 + 18*n.

Original entry on oeis.org

0, 30, 84, 162, 264, 390, 540, 714, 912, 1134, 1380, 1650, 1944, 2262, 2604, 2970, 3360, 3774, 4212, 4674, 5160, 5670, 6204, 6762, 7344, 7950, 8580, 9234, 9912, 10614, 11340, 12090, 12864, 13662, 14484, 15330, 16200, 17094, 18012, 18954, 19920
Offset: 0

Views

Author

Emeric Deutsch, Nov 08 2016

Keywords

Comments

For n>=3, a(n) is the second Zagreb index of the double-wheel graph DW[n]. The second Zagreb index of a simple connected graph g is the sum of the degree products d(i) d(j) over all edges ij of g.
The double-wheel graph DW[n] consists of two cycles C[n], whose vertices are connected to an additional vertex.
The M-polynomial of the double-wheel graph DW[n] is M(DW[n],x,y) = 2*n*x^3*y^3 + 2*n*x^3*y^{2*n}.

Examples

			a(3) = 162. Indeed, the double-wheel graph DW[3] has 6 edges with end-point degrees 3,3 and 6 edges with end-point degrees 3,6. Then the second Zagreb index is 6*9 + 6*18 = 162.
		

Crossrefs

First bisection of A277978.
After 0, subsequence of A255265.

Programs

Formula

G.f.: 6*x*(5-x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 6*A014106(n).
a(n) = A152746(n+1) - 6 = A154105(n) - 7. - Omar E. Pol, May 08 2018
Previous Showing 11-14 of 14 results.