A167919
Number of reduced words of length n in Coxeter group on 13 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 13, 156, 1872, 22464, 269568, 3234816, 38817792, 465813504, 5589762048, 67077144576, 804925734912, 9659108818944, 115909305827328, 1390911669927936, 16690940039135232, 200291280469622706
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,-66).
Cf.
A167881,
A167882,
A167896 -
A167900,
A167908,
A167914,
A167916,
A167922,
A167923,
A167924,
A167926,
A167927,
A167929,
A167931,
A167933,
A167935,
A167937,
A167938,
A167940 -
A167947,
A167949 -
A167962,
A167978,
A167980,
A167988,
A167989.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-12*x+77*x^16-66*x^17) )); // G. C. Greubel, Sep 13 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-12*t+77*t^16-66*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 13 2023 *)
coxG[{16,66,-11}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 28 2018 *)
-
def A167919_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-12*x+77*x^16-66*x^17) ).list()
A167919_list(40) # G. C. Greubel, Sep 13 2023
A167922
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270507
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,-78).
Cf.
A167881,
A167882,
A167896 -
A167900,
A167908,
A167914,
A167916,
A167919,
A167923,
A167924,
A167926,
A167927,
A167929,
A167931,
A167933,
A167935,
A167937,
A167938,
A167940 -
A167947,
A167949 -
A167962,
A167978,
A167980,
A167988,
A167989.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-13*x+90*x^16-78*x^17) )); // G. C. Greubel, Sep 13 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-13*t+90*t^16-78*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 13 2023 *)
coxG[{16, 78, -12, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 13 2023 *)
-
def A167922_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-13*x+90*x^16-78*x^17) ).list()
A167922_list(40) # G. C. Greubel, Sep 13 2023
A167926
Number of reduced words of length n in Coxeter group on 17 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398456
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,-120).
Cf.
A167881,
A167882,
A167896 -
A167900,
A167908,
A167914,
A167916,
A167919,
A167922,
A167923,
A167924,
A167927,
A167929,
A167931,
A167933,
A167935,
A167937,
A167938,
A167940 -
A167947,
A167949 -
A167962,
A167978,
A167980,
A167988,
A167989.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-16*x+135*x^16-120*x^17) )); // G. C. Greubel, Sep 10 2023
-
coxG[{16,120,-15}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Nov 27 2015 *)
CoefficientList[Series[(1+t)*(1-t^16)/(1-16*t+135*t^16-120*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
-
def A167926_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-16*x+135*x^16-120*x^17) ).list()
A167926_list(40) # G. C. Greubel, Sep 10 2023
A167927
Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684121
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (16,16,16,16,16,16,16,16,16,16,16,16,16,16,16,-136).
Cf.
A167881,
A167882,
A167896 -
A167900,
A167908,
A167914,
A167916,
A167919,
A167922,
A167923,
A167924,
A167926,
A167929,
A167931,
A167933,
A167935,
A167937,
A167938,
A167940 -
A167947,
A167949 -
A167962,
A167978,
A167980,
A167988,
A167989.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-17*x+152*x^16-136*x^17) )); // G. C. Greubel, Sep 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-17*t+152*t^16-136*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
coxG[{16,136,-16}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 15 2022 *)
-
def A167927_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-17*x+152*x^16-136*x^17) ).list()
A167927_list(40) # G. C. Greubel, Sep 10 2023
A167937
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
Original entry on oeis.org
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,-231).
Cf.
A167881,
A167882,
A167896 -
A167900,
A167908,
A167914,
A167916,
A167919,
A167922,
A167923,
A167924,
A167926,
A167927,
A167929,
A167931,
A167933,
A167935,
A167938,
A167940 -
A167947,
A167949 -
A167962,
A167978,
A167980,
A167988,
A167989.
-
R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) )); // G. C. Greubel, Sep 10 2023
-
CoefficientList[Series[(1+t)*(1-t^16)/(1-22*t+252*t^16-231*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
coxG[{16,231,-21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 27 2016 *)
-
def A167937_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) ).list()
A167937_list(40) # G. C. Greubel, Sep 10 2023
A154637
a(n) is the ratio of the sum of squares of the bends of the circles that are added in the n-th generation of Apollonian packing, to the sum of squares of the bends of the initial three circles.
Original entry on oeis.org
1, 2, 66, 1314, 26082, 517698, 10275714, 203961186, 4048396578, 80356048002, 1594975770306, 31658447262114, 628384017931362, 12472705016840898, 247568948283023874, 4913960850609954786, 97536510167350024098, 1935988320795170617602, 38427156885401362279746, 762735172745641733742114
Offset: 0
Starting with three circles with bends -1,2,2, the ssq is 9. The first derived generation has two circles, each with bend 3. So a(1) = (9+9)/9 = 2.
-
CoefficientList[Series[(29 z^2 - 18 z + 1)/(3 z^2 - 20 z + 1), {z, 0, 100}], z] (* and *) LinearRecurrence[{20, -3}, {1, 2, 66}, 100] (* Vladimir Joseph Stephan Orlovsky, Jul 03 2011 *)
-
Vec((1-18*x+29*x^2)/(1-20*x+3*x^2) + O(x^30)) \\ Colin Barker, Nov 16 2016
A169546
Number of reduced words of length n in Coxeter group on 5 generators S_i with relations (S_i)^2 = (S_i S_j)^35 = I.
Original entry on oeis.org
1, 5, 20, 80, 320, 1280, 5120, 20480, 81920, 327680, 1310720, 5242880, 20971520, 83886080, 335544320, 1342177280, 5368709120, 21474836480, 85899345920, 343597383680, 1374389534720, 5497558138880, 21990232555520, 87960930222080
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, -6).
-
R:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36) )); // G. C. Greubel, Apr 25 2019
-
coxG[{35,6,-3,30}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 16 2015 *)
CoefficientList[Series[(1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36), {x, 0, 25}], x] (* G. C. Greubel, Apr 25 2019 *)
-
my(x='x+O('x^25)); Vec((1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36)) \\ G. C. Greubel, Apr 25 2019
-
((1+x)*(1-x^35)/(1-4*x+9*x^35-6*x^36)).series(x, 25).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A163829
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
Original entry on oeis.org
1, 48, 2256, 106032, 4983504, 234223560, 11008454304, 517394861664, 24317441438880, 1142914245838944, 53716710971646072, 2524673262335033136, 118659072125876564688, 5576949543463542381360, 262115366765585626863312
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-47*x+1127*x^5-1081*x^6) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^5)/(1-47*x+1127*x^5-1081*x^6), {x, 0, 20}], x] (* G. C. Greubel, Aug 05 2017, modified Apr 25 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-47*x+1127*x^5-1081*x^6)) \\ G. C. Greubel, Aug 05 2017, modified Apr 25 2019
-
((1+x)*(1-x^5)/(1-47*x+1127*x^5-1081*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A163993
Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 25, 600, 14400, 345600, 8294400, 199065300, 4777560000, 114661267500, 2751866280000, 66044691360000, 1585070208000000, 38041627760729700, 912997692709095600, 21911911659905871900, 525885088676233035600
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^7)/(1-24*x+299*x^6-276*x^7) )); // G. C. Greubel, Apr 25 2019
-
CoefficientList[Series[(1+x)*(1-x^7)/(1-24*x+299*x^6-276*x^7), {x,0,20}], x] (* G. C. Greubel, Aug 24 2017, modified Apr 25 2019 *)
coxG[{6,276,-23}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 02 2018 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^7)/(1-24*x+299*x^6-276*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
-
((1+x)*(1-x^7)/(1-24*x+299*x^6-276*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
A164091
Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
Original entry on oeis.org
1, 41, 1640, 65600, 2624000, 104960000, 4198399180, 167935934400, 6717436064820, 268697390145600, 10747893507936000, 429915656401920000, 17196622899456671580, 687864781713487950000, 27514585897949409744420
Offset: 0
-
R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7) )); // G. C. Greubel, Apr 25 2019
-
coxG[{6,780,-39}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 25 2015 *)
CoefficientList[Series[(1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7), {x,0,20}], x] (* G. C. Greubel, Apr 25 2019 *)
-
my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7)) \\ G. C. Greubel, Apr 25 2019
-
((1+x)*(1-x^6)/(1-40*x+819*x^6-780*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Comments