cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 2314 results. Next

A167049 Number of reduced words of length n in Coxeter group on 19 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.

Original entry on oeis.org

1, 19, 342, 6156, 110808, 1994544, 35901792, 646232256, 11632180608, 209379250944, 3768826516992, 67838877305856, 1221099791505408, 21979796247097173, 395636332447746036, 7121453984059373415
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170738, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    CoefficientList[Series[(1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14), {x, 0, 20}], x] (* G. C. Greubel, May 31 2016, modified Apr 26 2019 *)
    coxG[{13, 153, -17}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^13)/(1-18*x+170*x^13-153*x^14)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(153*t^13 - 17*t^12 - 17*t^11 - 17*t^10 - 17*t^9 - 17*t^8 - 17*t^7 - 17*t^6 - 17*t^5 - 17*t^4 - 17*t^3 - 17*t^2 - 17*t + 1).
G.f.: (1+x)*(1-x^13)/(1 - 18*x + 170*x^13 - 153*x^14). - G. C. Greubel, Apr 26 2019
a(n) = -153*a(n-13) + 17*Sum_{k=1..12} a(n-k). - Wesley Ivan Hurt, May 06 2021

A167942 Number of reduced words of length n in Coxeter group on 27 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

Original entry on oeis.org

1, 27, 702, 18252, 474552, 12338352, 320797152, 8340725952, 216858874752, 5638330743552, 146596599332352, 3811511582641152, 99099301148669952, 2576581829865418752, 66991127576500887552, 1741769316989023076352
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170746, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) )); // G. C. Greubel, Sep 08 2023
    
  • Mathematica
    CoefficientList[Series[(1+t)*(1-t^16)/(1-26*t+350*t^16-325*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 08 2023 *)
    coxG[{16,325,-25}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Oct 28 2018 *)
  • SageMath
    def A167942_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x)*(1-x^16)/(1-26*x+350*x^16-325*x^17) ).list()
    A167942_list(40) # G. C. Greubel, Sep 08 2023

Formula

G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 325*t^16 - 25*t^15 - 25*t^14 - 25*t^13 - 25*t^12 - 25*t^11 - 25*t^10 - 25*t^9 - 25*t^8 - 25*t^7 - 25*t^6 - 25*t^5 - 25*t^4 - 25*t^3 - 25*t^2 - 25*t + 1).
From G. C. Greubel, Sep 08 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 26*t + 350*t^16 - 325*t^17).
a(n) = 25*Sum_{j=1..15} a(n-j) - 325*a(n-16). (End)

A154639 a(n) is the number of reduced words of length n (i.e., all possible length-reducing cancellations have been applied) in the generators of the "Apollonian reflection group" in three dimensions. This is a Coxeter group with five generators, satisfying the identities (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 5, 20, 80, 300, 1140, 4260
Offset: 0

Views

Author

Colin Mallows, Jan 13 2009

Keywords

Comments

ABA and BAB are equal, but are counted as distinct reduced words.

Examples

			All 80 squarefree words of length 3 are counted, so a(3) = 80.
		

Crossrefs

For other sequences relating to the 3-dimensional case, see A154638-A154645.

A154640 a(n) is the number of spheres that are added in the n-th generation of Apollonian packing of three-dimensional spheres, starting with five mutually tangent spheres and using "strategy (a)" to count them (see the reference).

Original entry on oeis.org

5, 5, 20, 60, 210, 690, 3330
Offset: 0

Views

Author

Colin Mallows, Jan 13 2009

Keywords

Comments

In strategy (a) we do not count spheres that are generated (by reflection) from quintuples that were not generated in the previous generation.

Examples

			For a(3), we apply reflection only to the 20 quintuples that were generated in the second generation, ignoring the 10 "extra" quintuples (which will appear as ABA = BAB in the third generation).
		

Crossrefs

For other sequences relating to the 3-dimensional case, see A154638-A154645.

A162760 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 11, 110, 1045, 9900, 93555, 884070, 8353125, 78924780, 745717995, 7045894350, 66572896005, 629011803420, 5943197049075, 56154099352230, 530570136457845, 5013074255082300, 47365865053010955, 447534797632236270
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A003953, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Magma
    I:=[1,11,110,1045]; [n le 4 select I[n] else 9*Self(n-1) +9*Self(n-2)-45*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 01 2017
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4) )); // G. C. Greubel, Apr 26 2019
    
  • Mathematica
    Join[{1}, LinearRecurrence[{9, 9, -45}, {11, 110, 1045}, 19]] (* Vincenzo Librandi, Apr 01 2017 *)
    CoefficientList[Series[(1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4), {x,0,20}],x] (* or *) coxG[{3, 45, -9}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(x='x+O('x^20)); Vec((1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4)) \\ G. C. Greubel, Apr 26 2019
    
  • Sage
    ((1+x)*(1-x^3)/(1-10*x+54*x^3-45*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(45*t^3 - 9*t^2 - 9*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 10*x + 54*x^3 - 45*x^4). - G. C. Greubel, Apr 26 2019

A162851 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 37, 1332, 47286, 1678320, 59557050, 2113447770, 74997827100, 2661373678950, 94441530616650, 3351353019273000, 118926143828399250, 4220214225380039250, 149758560520153357500, 5314333645481777358750, 188584492248078150341250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[37, 1332, 47286];; for n in [4..20] do a[n]:=35*a[n-1]+ 35*a[n-2]-630*a[n-3]; od; Concatenation([1], a); # G. C. Greubel, Apr 26 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 +2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{35, 35, -630}, {1, 37, 1332}, 20] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 630, -35}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 26 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(630*t^3-35*t^2-35*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-36*x+665*x^3-630*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019
    

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(630*t^3 - 35*t^2 - 35*t + 1).
G.f.: (1+x)*(1-x^3)/(1 - 36*x + 665*x^3 - 630*x^4). - G. C. Greubel, Apr 26 2019
a(n) = 35*a(n-1)+35*a(n-2)-630*a(n-3). - Wesley Ivan Hurt, May 05 2021

A162858 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 38, 1406, 51319, 1872792, 68331600, 2493179658, 90967125816, 3319062151464, 121100596329852, 4418523599533920, 161215975658220768, 5882188976123487336, 214619841546851901024, 7830703259038738949472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170757, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[38,1406,51319];; for n in [4..20] do a[n]:=36*a[n-1]+36*a[n-2]-666*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 25 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(666*x^3-36*x^2-36*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 25 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 666, -36}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(666*t^3-36*t^2-36*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -37*x +702*x^3 -666*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 26 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(666*t^3 - 36*t^2 - 36*t + 1).
a(n) = 36*a(n-1) + 36*a(n-2) - 666*a(n-3), n > 0. - Muniru A Asiru, Oct 25 2018
G.f.: (1+x)*(1-x^3)/(1 - 37*x + 702*x^3 - 666*x^4). - G. C. Greubel, Apr 27 2019

A162871 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 39, 1482, 55575, 2083692, 78111033, 2928135600, 109766289945, 4114781688966, 154249795892907, 5782323668697966, 216760526662519203, 8125647855742321632, 304604136609884440797, 11418619374984439210164
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170758, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[39,1482,55575];; for n in [4..15] do a[n]:=37*a[n-1]+37*a[n-2]-703*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(703*x^3-37*x^2-37*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    coxG[{3,703,-37}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jun 25 2018 *)
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(703*t^3-37*t^2-37*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -38*x +740*x^3 -703*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(703*t^3 - 37*t^2 - 37*t + 1).
a(n) = 37*a(n-1) + 37*a(n-2) - 703*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 38*x + 740*x^3 - 703*x^4). - G. C. Greubel, Apr 27 2019

A162877 Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 40, 1560, 60060, 2311920, 88979280, 3424561140, 131801403240, 5072652999960, 195231667516860, 7513899339838320, 289188142406526480, 11130010920731869140, 428361764988438838440, 16486399071025250766360
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170759, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[40,1560,60060];; for n in [4..20] do a[n]:=38*a[n-1]+38*a[n-2] -741*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(741*x^3-38*x^2-38*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    coxG[{3,741,-38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jan 29 2017 *)
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(741*t^3-38*t^2-38*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1 -39*x +779*x^3 -741*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(741*t^3 - 38*t^2 - 38*t + 1).
a(n) = 38*a(n-1) + 38*a(n-2) - 741*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 39*x + 779*x^3 - 741*x^4). - G. C. Greubel, Apr 27 2019

A162878 Number of reduced words of length n in Coxeter group on 41 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.

Original entry on oeis.org

1, 41, 1640, 64780, 2558400, 101024820, 3989217180, 157523886000, 6220211664420, 245620097065980, 9698903409405600, 382984651654144020, 15123074971766970780, 597171180654087109200, 23580747941118076783620
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170760, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • GAP
    a:=[41,1640,64780];; for n in [4..20] do a[n]:=39*a[n-1]+39*a[n-2] -780*a[n-3]; od; Concatenation([1],a); # Muniru A Asiru, Oct 24 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 20); Coefficients(R!((t^3 + 2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1))); // G. C. Greubel, Oct 24 2018
    
  • Maple
    seq(coeff(series((x^3+2*x^2+2*x+1)/(780*x^3-39*x^2-39*x+1),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Oct 24 2018
  • Mathematica
    CoefficientList[Series[(t^3+2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1), {t, 0, 20}], t] (* G. C. Greubel, Oct 24 2018 *)
    coxG[{3, 780, -39}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 27 2019 *)
  • PARI
    my(t='t+O('t^20)); Vec((t^3+2*t^2+2*t+1)/(780*t^3-39*t^2-39*t+1)) \\ G. C. Greubel, Oct 24 2018
    
  • Sage
    ((1+x)*(1-x^3)/(1-40*x+819*x^3-780*x^4)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 27 2019

Formula

G.f.: (t^3 + 2*t^2 + 2*t + 1)/(780*t^3 - 39*t^2 - 39*t + 1).
a(n) = 39*a(n-1) + 39*a(n-2) - 780*a(n-3), n > 0. - Muniru A Asiru, Oct 24 2018
G.f.: (1+x)*(1-x^3)/(1 - 40*x + 819*x^3 - 780*x^4). - G. C. Greubel, Apr 27 2019
Previous Showing 71-80 of 2314 results. Next