cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 138 results. Next

A157119 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+103)^2 = y^2.

Original entry on oeis.org

0, 84, 105, 309, 765, 884, 2060, 4712, 5405, 12257, 27713, 31752, 71688, 161772, 185313, 418077, 943125, 1080332, 2436980, 5497184, 6296885, 14204009, 32040185, 36701184, 82787280, 186744132, 213910425, 482519877, 1088424813, 1246761572
Offset: 1

Views

Author

Klaus Brockhaus, Feb 25 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A157120.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (11+3*sqrt(2))/(11-3*sqrt(2)) for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))*(11-3*sqrt(2))^2/(11+3*sqrt(2))^2 for n mod 3 = 0.

Crossrefs

Cf. A157120, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A157121 (decimal expansion of 11+3*sqrt(2)), A157122 (decimal expansion of 11-3*sqrt(2)), A157123 (decimal expansion of (11+3*sqrt(2))/(11-3*sqrt(2))).

Programs

  • PARI
    {forstep(n=0, 1300000000, [1, 3], if(issquare(2*n^2+206*n+10609), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+206 for n > 6; a(1) = 0, a(2) = 84, a(3) = 105, a(4) = 309, a(5) = 765, a(6) = 884.
G.f.: x*(84+21*x+204*x^2-48*x^3-7*x^4-48*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 103*A001652(k) for k >= 0.

A118576 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+16807)^2 = y^2.

Original entry on oeis.org

0, 2145, 3773, 6468, 8540, 12005, 19208, 24521, 28665, 35672, 41148, 50421, 61388, 69972, 84525, 95921, 115248, 156065, 186480, 210308, 250733, 282405, 336140, 399797, 449673, 534296, 600600, 713097, 950796, 1127973, 1266797, 1502340
Offset: 1

Views

Author

Mohamed Bouhamida, May 16 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+16807, y); 16807 = 7^5.
Corresponding values y of solutions (x, y) are in A156713.
Limit_{n -> oo} a(n)/a(n-11) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 11 = {1, 2, 4, 6, 8, 10}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 11 = {0, 3, 5, 9}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 11 = 7.

Crossrefs

Cf. A156713, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • PARI
    {forstep(n=0, 1600000, [1, 3], if(issquare(2*n^2 + 33614*n + 282475249), print1(n, ",")))}

Formula

a(n) = 6*a(n-11)-a(n-22)+33614 for n > 22; a(1) = 0, a(2) = 2145, a(3) = 3773, a(4) = 6468, a(5) = 8540, a(6) = 12005, a(7) = 19208, a(8) = 24521, a(9) = 28665, a(10) = 35672, a(11) = 41148, a(12) = 50421, a(13) = 61388, a(14) = 69972, a(15) = 84525, a(16) = 95921, a(17) = 115248, a(18) = 156065, a(19) = 186480, a(20) = 210308, a(21) = 250733, a(22) = 282405.
G.f.: x*(2145+1628*x+2695*x^2+2072*x^3+3465*x^4+7203*x^5+5313*x^6+4144*x^7+7007*x^8+5476*x^9+9273*x^10-1903*x^11-1184*x^12-1617*x^13-1036*x^14-1463*x^15-2401*x^16-1463*x^17 -1036*x^18-1617*x^19-1184*x^20-1903*x^21 )/((1-x)*(1-6*x^11+x^22)).

Extensions

Edited by Klaus Brockhaus, Feb 14 2009

A118630 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+2401)^2 = y^2.

Original entry on oeis.org

0, 539, 924, 1220, 1715, 2744, 3503, 4095, 5096, 7203, 9996, 12075, 13703, 16464, 22295, 26640, 30044, 35819, 48020, 64239, 76328, 85800, 101871, 135828, 161139, 180971, 214620, 285719, 380240, 450695, 505899, 599564, 797475, 944996, 1060584
Offset: 1

Views

Author

Mohamed Bouhamida, May 09 2006

Keywords

Comments

Also values x of Pythagorean triples (x, x+2401, y); 2401=7^4.
Corresponding values y of solutions (x, y) are in A157247.
Limit_{n -> oo} a(n)/a(n-9) = 3+2*sqrt(2).
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2)) / ((9+4*sqrt(2))/7)^2 for n mod 9 = {1, 2, 6}.
Limit_{n -> oo} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^5 / (3+2*sqrt(2))^2 for n mod 9 = {0, 3, 5, 7}.
Limit_{n -> oo} a(n)/a(n-1) = (3+2*sqrt(2))^3 / ((9+4*sqrt(2))/7)^7 for n mod 9 = {4, 8}.

Examples

			924^2+(924+2401)^2 = 853776+11055625 = 11909401 = 3451^2.
		

Crossrefs

Cf. A157247, A001652, A118576, A118554, A118611, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7).

Programs

  • PARI
    {forstep(n=0, 1100000, [3 ,1], if(issquare(n^2+(n+2401)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18)+4802 for n > 18; a(1)=0, a(2)=539, a(3)=924, a(4)=1220, a(5)=1715, a(6)=2744, a(7)=3503, a(8)=4095, a(9)=5096, a(10)=7203, a(11)=9996, a(12)=12075, a(13)=13703, a(14)=16464,a (15)=22295, a(16)=26640, a(17)=30044, a(18)=35819.
G.f.: x*(539+385*x+296*x^2+495*x^3+1029*x^4+759*x^5+592*x^6 +1001*x^7+2107*x^8-441*x^9-231*x^10-148*x^11-209*x^12-343*x^13 -209*x^14-148*x^15-231*x^16-441*x^17) / ((1-x)*(1-6*x^9+x^18)).
a(9*k+1) = 2401*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Feb 25 2009

A129626 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+281)^2 = y^2.

Original entry on oeis.org

0, 76, 559, 843, 1239, 3976, 5620, 7920, 23859, 33439, 46843, 139740, 195576, 273700, 815143, 1140579, 1595919, 4751680, 6648460, 9302376, 27695499, 38750743, 54218899, 161421876, 225856560, 316011580, 940836319, 1316389179, 1841851143, 5483596600
Offset: 1

Views

Author

Mohamed Bouhamida, May 30 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+281, y).
Corresponding values y of solutions (x, y) are in A157348.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (297+68*sqrt(2))/281 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (130803+73738*sqrt(2))/281^2 for n mod 3 = 0.

Crossrefs

Cf. A157348, A001652, A129288, A129289, A129298, A156035 (decimal expansion of 3+2*sqrt(2)), A157349 (decimal expansion of (297+68*sqrt(2))/281), A157350 (decimal expansion of (130803+73738*sqrt(2))/281^2).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 76, 559, 843, 1239, 3976, 5620}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {forstep(n=0, 1000000000, [3, 1], if(issquare(2*n^2+562*n+78961), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+562 for n > 6; a(1)=0, a(2)=76, a(3)=559, a(4)=843, a(5)=1239, a(6)=3976.
G.f.: x*(76+483*x+284*x^2-60*x^3-161*x^4-60*x^5)/((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 281*A001652(k) for k >= 0.

Extensions

Edited by Klaus Brockhaus, Apr 12 2009

A129725 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+521)^2 = y^2.

Original entry on oeis.org

0, 100, 1159, 1563, 2079, 8080, 10420, 13416, 48363, 61999, 79459, 283140, 362616, 464380, 1651519, 2114739, 2707863, 9627016, 12326860, 15783840, 56111619, 71847463, 91996219, 327043740, 418758960, 536194516, 1906151863, 2440707339, 3125171919, 11109868480
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 02 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+521, y).
Corresponding values y of solutions (x, y) are in A160583.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (537+92*sqrt(2))/521 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (520659+314170*sqrt(2))/521^2 for n mod 3 = 0.

Crossrefs

Cf. A160583, A001652, A129642, A156035 (decimal expansion of 3+2*sqrt(2)), A160584 (decimal expansion of (537+92*sqrt(2))/521), A160585 (decimal expansion of (520659+314170*sqrt(2))/521^2).

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {0, 100, 1159, 1563, 2079, 8080, 10420}, 50] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1042*n+271441), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1042 for n > 6; a(1)=0, a(2)=100, a(3)=1159, a(4)=1563, a(5)=2079, a(6)=8080.
G.f.: x*(100+1059*x+404*x^2-84*x^3-353*x^4-84*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 521*A001652(k) for k >= 0.

Extensions

Edited and two terms added by Klaus Brockhaus, Jun 08 2009

A129837 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+119)^2 = y^2.

Original entry on oeis.org

0, 24, 49, 57, 85, 136, 180, 196, 261, 357, 481, 616, 660, 816, 1105, 1357, 1449, 1824, 2380, 3100, 3885, 4141, 5049, 6732, 8200, 8736, 10921, 14161, 18357, 22932, 24424, 29716, 39525, 48081, 51205, 63940, 82824, 107280, 133945, 142641, 173485, 230656
Offset: 1

Views

Author

Mohamed Bouhamida, May 21 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+119, y).
Corresponding values y of solutions (x, y) are in A156650.
lim_{n -> infinity} a(n)/a(n-9) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)/((19+6*sqrt(2))/17) for n mod 9 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = ((19+6*sqrt(2))/17)^2/((9+4*sqrt(2))/7) for n mod 9 = {0, 3}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/(((9+4*sqrt(2))/7)*((19+6*sqrt(2))/17)^2) for n mod 9 = {4, 8}.
lim_{n -> infinity} a(n)/a(n-1) = ((9+4*sqrt(2))/7)^2*((19+6*sqrt(2))/17)/(3+2*sqrt(2)) for n mod 9 = {5, 7}.
lim_{n -> infinity} a(n)/a(n-1) = (3+2*sqrt(2))/((9+4*sqrt(2))/7)^2 for n mod 9 = 6.

Crossrefs

Cf. A156650, A156035 (decimal expansion of 3+2*sqrt(2)), A156649 (decimal expansion of (9+4*sqrt(2))/7), A156163 (decimal expansion of (19+6*sqrt(2))/17), A118630.

Programs

  • Mathematica
    LinearRecurrence[{1,0,0,0,0,0,0,0,6,-6,0,0,0,0,0,0,0,-1,1}, {0,24,49,57,85,136,180,196,261,357,481,616,660,816,1105,1357,1449,1824,2380}, 140] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 240000, [1, 3], if(issquare(n^2+(n+119)^2), print1(n, ",")))}

Formula

a(n) = 6*a(n-9)-a(n-18)+238 for n > 18; a(1)=0, a(2)=24, a(3)=49, a(4)=57, a(5)=85, a(6)=136, a(7)=180, a(8)=196, a(9)=261, a(10)=357, a(11)=481, a(12)=616, a(13)=660, a(14)=816, a(15)=1105, a(16)=1357, a(17)=1449, a(18)=1824.
G.f.: x*(24+25*x+8*x^2+28*x^3+51*x^4+44*x^5+16*x^6+65*x^7+96*x^8-20*x^9-15*x^10-4*x^11-12*x^12-17*x^13-12*x^14-4*x^15-15*x^16-20*x^17 )/((1-x)*(1-6*x^9+x^18))

Extensions

Edited and extended by Klaus Brockhaus, Feb 13 2009

A129975 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+953)^2 = y^2.

Original entry on oeis.org

0, 132, 2295, 2859, 3535, 15792, 19060, 22984, 94363, 113407, 136275, 552292, 663288, 796572, 3221295, 3868227, 4645063, 18777384, 22547980, 27075712, 109444915, 131421559, 157811115, 637894012, 765983280, 919792884, 3717921063
Offset: 1

Views

Author

Mohamed Bouhamida, Jun 13 2007

Keywords

Comments

Also values x of Pythagorean triples (x, x+953, y).
Corresponding values y of solutions (x, y) are in A160212.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (969+124*sqrt(2))/953 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (1947891+1218490*sqrt(2))/953^2 for n mod 3 = 0.

Crossrefs

Cf. A160212, A001652, A129974, A156035 (decimal expansion of 3+2*sqrt(2)), A160213 (decimal expansion of (969+124*sqrt(2))/953), A160214 (decimal expansion of (1947891+1218490*sqrt(2))/953^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,132,2295,2859,3535,15792,19060},30] (* Harvey P. Dale, Apr 12 2013 *)
  • PARI
    {forstep(n=0, 10000000, [3, 1], if(issquare(2*n^2+1906*n+908209), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+1906 for n > 6; a(1)=0, a(2)=132, a(3)=2295, a(4)=2859, a(5)=3535, a(6)=15792.
G.f.: x*(132+2163*x+564*x^2-116*x^3-721*x^4-116*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 953*A001652(k) for k >= 0.
a(1)=0, a(2)=132, a(3)=2295, a(4)=2859, a(5)=3535, a(6)=15792, a(7)=19060, a(n)=a(n-1)+6*a(n-3)-6*a(n-4)-a(n-6)+a(n-7). - Harvey P. Dale, Apr 12 2013

Extensions

Edited and two terms added by Klaus Brockhaus, May 18 2009

A156156 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 13, a(2) = 53.

Original entry on oeis.org

13, 53, 305, 1777, 10357, 60365, 351833, 2050633, 11951965, 69661157, 406014977, 2366428705, 13792557253, 80388914813, 468540931625, 2730856674937, 15916599117997, 92768738033045, 540695829080273, 3151406236448593
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

First trisection of A155923.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156157, A156158.

Programs

  • PARI
    {m=20; v=concat([13, 53], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((50+31*sqrt(2))*(3-2*sqrt(2))^n+(50-31*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(13-25*x)/(1-6*x+x^2).

Extensions

Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009

A156157 a(n) = 6*a(n-1)-a(n-2) for n > 2; a(1) = 17, a(2) = 85.

Original entry on oeis.org

17, 85, 493, 2873, 16745, 97597, 568837, 3315425, 19323713, 112626853, 656437405, 3825997577, 22299548057, 129971290765, 757528196533, 4415197888433, 25733659134065, 149986756915957, 874186882361677, 5095134537254105
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Comments

lim_{n -> infinity} a(n)/a(n-1) = 3+2*sqrt(2).

Crossrefs

Second trisection of A155923. Equals 17*A001653.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156156, A156158.

Programs

  • PARI
    {m=20; v=concat([17, 85], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((2+sqrt(2))*(3-2*sqrt(2))^n+(2-sqrt(2))*(3+2*sqrt(2))^n)*17/4.
G.f.: 17*x*(1-x)/(1-6*x+x^2).

Extensions

Replaced abbreviation by sqrt(2) Klaus Brockhaus, Feb 12 2009
G.f. corrected by Klaus Brockhaus, Sep 23 2009

A156158 a(n) = 6*a(n-1) - a(n-2) for n > 2; a(1) = 25, a(2) = 137.

Original entry on oeis.org

25, 137, 797, 4645, 27073, 157793, 919685, 5360317, 31242217, 182092985, 1061315693, 6185801173, 36053491345, 210135146897, 1224757390037, 7138409193325, 41605697769913, 242495777426153, 1413368966787005
Offset: 1

Views

Author

Klaus Brockhaus, Feb 09 2009

Keywords

Crossrefs

Third trisection of A155923.
Cf. A156035 (decimal expansion of 3+2*sqrt(2)), A156156, A156157.

Programs

  • Mathematica
    LinearRecurrence[{6,-1},{25,137},30] (* Harvey P. Dale, Jan 02 2019 *)
  • PARI
    {m=19; v=concat([25,137], vector(m-2)); for(n=3, m, v[n]=6*v[n-1]-v[n-2]); v}

Formula

a(n) = ((26+7*sqrt(2))*(3-2*sqrt(2))^n+(26-7*sqrt(2))*(3+2*sqrt(2))^n)/4.
G.f.: x*(25-13*x)/(1-6*x+x^2).
Limit_{n -> oo} a(n)/a(n-1) = 3+2*sqrt(2).
Previous Showing 61-70 of 138 results. Next