cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 50 results. Next

A285675 Expansion of Product_{n>0} ((1-x^n)/(1+x^n))^n in powers of x.

Original entry on oeis.org

1, -2, -2, 0, 6, 8, 4, -4, -18, -34, -32, -8, 36, 96, 144, 152, 94, -60, -294, -560, -760, -760, -460, 228, 1276, 2486, 3576, 4080, 3456, 1304, -2576, -7956, -13986, -19208, -21644, -19056, -9462, 8200, 33364, 63224, 92384, 112860, 114976, 88896, 26660, -74792
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2017

Keywords

Crossrefs

Product_{n>0} ((1-x^n)/(1+x^n))^(n^m): A002448 (m=0), this sequence (m=1), A285988 (m=2), A285990 (m=3), A285991 (m=4).

Formula

a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A076577(k)*a(n-k) for n > 0.
G.f.: exp(Sum_{k>=1} (sigma_2(k) - sigma_2(2*k))*x^k/(2*k)). - Ilya Gutkovskiy, Apr 14 2019
G.f.: exp( - 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^2) ). Cf. A000122. - Peter Bala, Dec 23 2021

A261451 Expansion of Product_{k>=1} ((1+x^k)/(1-x^k))^(k+1).

Original entry on oeis.org

1, 4, 14, 44, 124, 328, 824, 1980, 4590, 10320, 22584, 48268, 101016, 207432, 418704, 832032, 1629764, 3150280, 6014998, 11354084, 21204488, 39206168, 71811256, 130369900, 234704360, 419195412, 743085912, 1307823672, 2286094704, 3970174648, 6852048368
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 19 2015

Keywords

Comments

Convolution of A005380 and A219555.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k+1), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (7*Zeta(3))^(13/36) * exp(1/12 - Pi^4/(336*Zeta(3)) + Pi^2 * n^(1/3) / (2^(5/3) * (7*Zeta(3))^(1/3)) + 3/2 * ((7*Zeta(3))/2)^(1/3) * n^(2/3)) / (A * 2^(35/18) * 3^(1/2) * Pi * n^(31/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.

A261647 Expansion of Product_{k>=0} ((1+x^(2*k+1))/(1-x^(2*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 44, 102, 216, 428, 816, 1494, 2650, 4584, 7740, 12804, 20808, 33264, 52400, 81462, 125100, 189966, 285516, 425016, 627040, 917436, 1331856, 1919332, 2746926, 3905784, 5519352, 7754064, 10833192, 15055216, 20817600, 28647414, 39241336, 53517060
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(3*n/2)) * 3^(1/4) / (8 * 2^(1/4) * n^(3/4)).

A285458 Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(4*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 9, 17, 30, 54, 94, 161, 269, 449, 740, 1200, 1930, 3083, 4877, 7650, 11919, 18444, 28363, 43341, 65848, 99523, 149654, 223901, 333448, 494427, 729996, 1073408, 1572264, 2294389, 3336191, 4834261, 6981727, 10050944, 14424665, 20639641, 29447118
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(4*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * (13*Zeta(3))^(1/3) * n^(2/3) / 4) * (13*Zeta(3))^(7/36) / (2 * A * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A285459 Expansion of Product_{k>=1} ((1 + x^k) / (1 - x^(5*k)))^k.

Original entry on oeis.org

1, 1, 2, 5, 8, 17, 29, 51, 88, 150, 254, 416, 682, 1102, 1765, 2810, 4415, 6897, 10704, 16482, 25251, 38410, 58120, 87480, 130999, 195253, 289612, 427757, 629128, 921590, 1344904, 1955246, 2832608, 4089696, 5885169, 8442269, 12073072, 17214535, 24475417
Offset: 0

Views

Author

Vaclav Kotesovec, Apr 19 2017

Keywords

Comments

In general, if m >= 1 and g.f. = Product_{k>=1} ((1 + x^k) / (1 - x^(m*k)))^k, then a(n, m) ~ exp(1/12 + 3 * 2^(-4/3) * (3 + 4/m^2)^(1/3) * Zeta(3)^(1/3) * n^(2/3)) * (3 + 4/m^2)^(7/36) * m^(1/12) * Zeta(3)^(7/36) / (A * 2^(7/9) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

Crossrefs

Cf. A156616 (m=1), A000219 (m=2), A285446 (m=3), A285458 (m=4).

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[((1+x^k)/(1-x^(5*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(1/12 + 3 * 2^(-4/3) * 5^(-2/3) * (79*Zeta(3))^(1/3) * n^(2/3)) * (79*Zeta(3))^(7/36) / (A * 2^(7/9) * 5^(11/36) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962.

A295831 Expansion of Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.

Original entry on oeis.org

1, 1, 2, 4, 6, 11, 19, 30, 47, 76, 118, 181, 277, 417, 624, 929, 1367, 2001, 2913, 4210, 6056, 8665, 12328, 17466, 24640, 34600, 48395, 67442, 93625, 129520, 178588, 245429, 336252, 459324, 625613, 849762, 1151150, 1555378, 2096332, 2818630, 3780903, 5060240, 6757633, 9005106, 11975265
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 44; CoefficientList[Series[Product[((1 + x^(2 k))/(1 - x^(2 k - 1)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 44; CoefficientList[Series[Exp[Sum[x^k (1 - (-1)^k x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k))/(1 - x^(2*k-1)))^k.
G.f.: exp(Sum_{k>=1} x^k*(1 - (-1)^k*x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3*(7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (12 * (7*Zeta(3))^(1/3)) - Pi^4 / (3024*Zeta(3)) - 1/24) * A^(1/2) * (7*Zeta(3))^(11/72) / (2^(11/8) * sqrt(3*Pi) * n^(47/72)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A295832 Expansion of Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.

Original entry on oeis.org

1, 1, 1, 3, 5, 8, 12, 20, 33, 50, 74, 114, 175, 257, 375, 555, 814, 1171, 1677, 2406, 3435, 4855, 6825, 9591, 13428, 18667, 25851, 35745, 49250, 67544, 92340, 125966, 171345, 232257, 313945, 423470, 569778, 764465, 1023231, 1366827, 1821756, 2422394, 3214318, 4257088, 5627086, 7422941
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2017

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 45; CoefficientList[Series[Product[((1 + x^(2 k - 1))/(1 - x^(2 k)))^k, {k, 1, nmax}], {x, 0, nmax}], x]
    nmax = 45; CoefficientList[Series[Exp[Sum[x^k ((-1)^(k + 1) + x^k)/(k (1 - x^(2 k))^2), {k, 1, nmax}]], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^(2*k-1))/(1 - x^(2*k)))^k.
G.f.: exp(Sum_{k>=1} x^k*((-1)^(k+1) + x^k)/(k*(1 - x^(2*k))^2)).
a(n) ~ exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / 4 + Pi^2 * n^(1/3) / (24 * (7*Zeta(3))^(1/3)) - Pi^4 / (12096 * Zeta(3)) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(23/24) * sqrt(3*Pi) * n^(25/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 28 2017

A306081 Expansion of e.g.f. Product_{k>=1} ((1 + (exp(x) - 1)^k) / (1 - (exp(x) - 1)^k))^k.

Original entry on oeis.org

1, 2, 14, 134, 1574, 22262, 367814, 6907574, 144942854, 3357588662, 85000841414, 2331998188214, 68862337593734, 2176283210561462, 73250933670041414, 2614843434740912054, 98632371931151518214, 3918608865052986708662, 163507638190268814991814
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 20 2018

Keywords

Comments

Convolution of A306080 and A306046.

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[((1 + (Exp[x] - 1)^k)/(1 - (Exp[x] - 1)^k))^k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) = Sum_{k=0..n} Stirling2(n,k) * A156616(k) * k!.
a(n) ~ n! * exp(3 * (7*Zeta(3))^(1/3) * n^(2/3) / (4 * log(2)^(2/3)) + (1 - log(2)) * (7*Zeta(3))^(2/3) * n^(1/3) / (8 * log(2)^(4/3)) - 7*(log(2)^2 + log(2) - 1) * Zeta(3) / (48 * log(2)^2) + 1/12) * (7*Zeta(3))^(7/36) / (A * 2^(13/12) * sqrt(3*Pi) * n^(25/36) * (log(2))^(n + 11/36)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Jun 22 2018

A005309 Fermionic string states.

Original entry on oeis.org

1, 0, 2, 4, 8, 16, 32, 60, 114, 212, 384, 692, 1232, 2160, 3760, 6480, 11056, 18728, 31474, 52492, 86976, 143176, 234224, 380988, 616288, 991624, 1587600, 2529560, 4011808, 6334656, 9960080, 15596532, 24327122, 37801568, 58525152, 90291232, 138825416
Offset: 0

Views

Author

Keywords

Comments

See the reference for precise definition.
The g.f. -(1-2*z+2*z**2)/(-1+2*z) conjectured by Simon Plouffe in his 1992 dissertation is not correct.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

G.f. Product_{k>=1} ((1+x^k)/(1-x^k))^(k-1). - Vaclav Kotesovec, Aug 19 2015
Convolution of A052847 and A052812. - Vaclav Kotesovec, Aug 19 2015
a(n) ~ 2^(7/18) * (7*Zeta(3))^(1/36) * exp(1/12 - Pi^4/(336*Zeta(3)) - Pi^2 * n^(1/3) / (2^(5/3)*(7*Zeta(3))^(1/3)) + 3/2 * (7*Zeta(3)/2)^(1/3) * n^(2/3)) / (A * sqrt(3) * n^(19/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 19 2015

A261384 Expansion of Product_{k>=1} (1+x^k)^(2*k-1) / (1-x^k)^(2*k).

Original entry on oeis.org

1, 3, 12, 39, 117, 331, 893, 2307, 5766, 13986, 33046, 76302, 172567, 383013, 835731, 1795236, 3801105, 7941439, 16386777, 33423342, 67435311, 134675784, 266385932, 522135379, 1014643823, 1955656848, 3740191268, 7100290646, 13383997996, 25058666367
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 17 2015

Keywords

Comments

Convolution of A161870 and A255835.

Crossrefs

Programs

  • Mathematica
    nmax = 40; CoefficientList[Series[Product[(1+x^k)^(2*k-1)/(1-x^k)^(2*k), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ (7*Zeta(3))^(2/9) * exp(1/6 - Pi^4/(6048*Zeta(3)) - Pi^2 * n^(1/3) / (12*(7*Zeta(3))^(1/3)) + 3/2*(7*Zeta(3))^(1/3) * n^(2/3)) / (A^2 * 2^(1/6) * sqrt(3*Pi) * n^(13/18)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant.
Previous Showing 21-30 of 50 results. Next