cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 50 results. Next

A261649 Expansion of Product_{k>=0} ((1+x^(3*k+1))/(1-x^(3*k+1)))^2.

Original entry on oeis.org

1, 4, 8, 12, 20, 36, 56, 80, 120, 180, 252, 348, 492, 680, 912, 1228, 1652, 2180, 2856, 3744, 4860, 6256, 8044, 10284, 13048, 16520, 20848, 26140, 32672, 40756, 50596, 62576, 77256, 95060, 116540, 142592, 174036, 211736, 257056, 311448, 376332, 453764, 546160
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(3*k+1))/(1-x^(3*k+1)))^2,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(2*n/3)) * Gamma(1/3)^2 / (2^(7/4) * 3^(5/12) * Pi^(4/3) * n^(7/12)).

A261651 Expansion of Product_{k>=0} ((1+x^(3*k+1))/(1-x^(3*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 38, 72, 138, 254, 432, 708, 1154, 1836, 2826, 4288, 6456, 9552, 13902, 20070, 28722, 40614, 56916, 79242, 109448, 149988, 204318, 276672, 372288, 498264, 663602, 879252, 1159470, 1522564, 1990788, 2592162, 3362638, 4346244, 5597100, 7183792, 9191004
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(3*k+1))/(1-x^(3*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(n)) * Gamma(1/3)^3 / (4 * Pi^2 * sqrt(3*n)).

A261652 Expansion of Product_{k>=0} ((1+x^(4*k+1))/(1-x^(4*k+1)))^3.

Original entry on oeis.org

1, 6, 18, 38, 66, 108, 182, 306, 486, 728, 1068, 1578, 2318, 3312, 4614, 6388, 8862, 12192, 16488, 22038, 29400, 39156, 51702, 67554, 87810, 113982, 147384, 189200, 241446, 307356, 390408, 493662, 621006, 778712, 974628, 1216284, 1511756, 1872840, 2315538
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Comments

In general, if j > 0, a > 0, b > 0, GCD(a,b) = 1 and g.f. = Product_{k>=0} ((1 + x^(a*k+b))/(1 - x^(a*k+b)))^j, then a(n) ~ Gamma(b/a)^j * 2^(j/2 - 3/2 - 2*b*j/a) * a^(-j/4 - 1/4 + b*j/(2*a)) * exp(Pi*sqrt(j*n/a)) * j^(1/4 - j/4 + b*j/(2*a)) * Pi^(b*j/a - j) * n^(j/4 - 3/4 - b*j/(2*a)).

Crossrefs

Cf. A015128 (a=1, b=1, j=1), A156616.
Cf. A080054 (a=2, b=1, j=1), A007096 (a=2, b=1, j=2), A261647 (a=2, b=1, j=3), A014969 (a=2, b=1, j=4), A261648 (a=2, b=1, j=5), A014970 (a=2, b=1, j=6), A014972 (a=2, b=1, j=8), A103261 (a=2, b=1, j=10).
Cf. A261610 (a=3, b=1, j=1), A261649 (a=3, b=1, j=2), A261651 (a=3, b=1, j=3).
Cf. A261611 (a=4, b=1, j=1), A261650 (a=4, b=1, j=2), A261652 (a=4, b=1, j=3).

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(4*k+1))/(1-x^(4*k+1)))^3,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(3*n)/2) * 2^(1/4) * Gamma(1/4)^3 / (8 * 3^(1/8) * Pi^(9/4) * n^(3/8)).

A291666 Expansion of Product_{k>=1} ((1 + x^(k^2)) / (1 - x^(k^2)))^(k^2).

Original entry on oeis.org

1, 2, 2, 2, 10, 18, 18, 18, 50, 100, 118, 118, 206, 438, 582, 582, 806, 1606, 2344, 2506, 3122, 5322, 8202, 9498, 11130, 16844, 26110, 32272, 37018, 52274, 78018, 100098, 115986, 155026, 223190, 291674, 345132, 439518, 618734, 811790, 972846, 1204190, 1653726
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 29 2017

Keywords

Comments

Convolution of A291649 and A291655.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^(k^2))/(1-x^(k^2)))^(k^2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

log(a(n)) ~ 5 * Pi^(1/5) * ((8-sqrt(2)) * Zeta(5/2))^(2/5) * n^(3/5) / (4*3^(3/5)).

A291721 Expansion of Product_{k>=1} ((1 + x^(k^3))/(1 - x^(k^3)))^(k^3).

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 2, 2, 18, 34, 34, 34, 34, 34, 34, 34, 162, 290, 290, 290, 290, 290, 290, 290, 978, 1666, 1666, 1720, 1774, 1774, 1774, 1774, 4590, 7406, 7406, 8270, 9134, 9134, 9134, 9134, 18558, 27982, 27982, 34894, 41806, 41806, 41806, 41806, 68814, 95822
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 30 2017

Keywords

Comments

Convolution of A291692 and A291720.

Crossrefs

Programs

  • Mathematica
    nmax = 100; CoefficientList[Series[Product[((1 + x^(k^3))/(1 - x^(k^3)))^(k^3), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

log(a(n)) ~ 7 * ((2^(7/3)-1) * Gamma(1/3) * Zeta(7/3))^(3/7) * n^(4/7) / (2^(12/7) * 3^(9/7)).

A216406 G.f.: Product_{n>=1} ((1-x^n)/(1+x^n))^(2*n).

Original entry on oeis.org

1, -4, 0, 8, 16, -8, -48, -56, 0, 116, 256, 264, -32, -648, -1296, -1392, -352, 2040, 5200, 7368, 6112, -784, -13744, -29304, -39648, -33804, -1376, 60368, 139552, 205304, 210208, 103432, -146528, -521744, -928480, -1190000, -1069904, -339720, 1110864, 3146640, 5278624
Offset: 0

Views

Author

Paul D. Hanna, Sep 06 2012

Keywords

Comments

The number of contiguous signs seems to increase in proportion to the square-root of the number of terms.
Compare the g.f. to the Jacobi theta_4 series identity:
exp( Sum_{n>=1} -(sigma(2*n) - sigma(n))*x^n/n ) = 1 + 2*Sum_{n>=1} (-x)^(n^2).

Examples

			G.f.: A(x) = 1 - 4*x + 8*x^3 + 16*x^4 - 8*x^5 - 48*x^6 - 56*x^7 + 116*x^9 +...
where the g.f. equals the infinite product:
A(x) = (1-x)^2/(1+x)^2 * (1-x^2)^4/(1+x^2)^4 * (1-x^3)^6/(1+x^3)^6 * (1-x^4)^8/(1+x^4)^8 * (1-x^5)^10/(1+x^5)^10 *...
The logarithm of the g.f. is illustrated by:
-log(A(x)) = 4*x + 16*x^2/2 + 40*x^3/3 + 64*x^4/4 + 104*x^5/5 + 160*x^6/6 + 200*x^7/7 + 256*x^8/8 +...+ 4*A076577(n)*x^n/n +...
		

Crossrefs

Cf. A156616, A076577, A001157 (sigma_2), A261386.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1, n+1, -(sigma(2*m,2)-sigma(m,2))*x^m/m+x*O(x^n))), n)}
    
  • PARI
    {a(n)=polcoeff(prod(m=1,n,((1-x^m)/(1+x^m +x*O(x^n)))^(2*m)), n)}
    for(n=0, 100, print1(a(n), ", "))

Formula

G.f.: exp( Sum_{n>=1} -(sigma_2(2*n) - sigma_2(n))*x^n/n ) where sigma_2(n) = sum of squares of divisors of n.

A261650 Expansion of Product_{k>=0} ((1+x^(4*k+1))/(1-x^(4*k+1)))^2.

Original entry on oeis.org

1, 4, 8, 12, 16, 24, 40, 60, 80, 104, 144, 204, 272, 344, 440, 584, 768, 968, 1200, 1516, 1936, 2424, 2968, 3644, 4528, 5596, 6800, 8216, 10000, 12184, 14688, 17564, 21056, 25320, 30272, 35912, 42576, 50616, 60024, 70728, 83136, 97896, 115200, 134924, 157504
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 28 2015

Keywords

Crossrefs

Programs

  • Mathematica
    nmax=60; CoefficientList[Series[Product[((1+x^(4*k+1))/(1-x^(4*k+1)))^2,{k,0,nmax}],{x,0,nmax}],x]

Formula

a(n) ~ exp(Pi*sqrt(n/2)) * 2^(3/2) * Gamma(1/4)^2 / (16 * Pi^(3/2) * sqrt(n)).

A294780 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k-1)/2).

Original entry on oeis.org

1, 0, 2, 6, 14, 32, 74, 166, 370, 810, 1736, 3682, 7718, 15976, 32754, 66508, 133794, 266948, 528424, 1038178, 2025456, 3925360, 7559298, 14470162, 27540598, 52130440, 98159832, 183905636, 342896254, 636384748, 1175823512, 2163221030, 3963353706, 7232529308
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 08 2017

Keywords

Comments

Convolution of A027999 and A258349.

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[((1+x^k)/(1-x^k))^(k*(k-1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

a(n) ~ exp(2*Pi * n^(3/4) / 3 - 7*Zeta(3) * sqrt(n) / (2*Pi^2) - 49*Zeta(3)^2 * n^(1/4) / (4*Pi^5) - 22411 * Zeta(3)^3 / (392*Pi^8) - Zeta(3) / (8*Pi^2) - 1/24) * sqrt(A) / (2^(23/12) * Pi^(1/24) * n^(59/96)), where A is the Glaisher-Kinkelin constant A074962.

A302237 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*(k+1)/2).

Original entry on oeis.org

1, 2, 8, 26, 76, 216, 590, 1554, 3988, 9988, 24464, 58794, 138866, 322808, 739658, 1672372, 3734848, 8245956, 18012114, 38952586, 83448832, 177194716, 373111970, 779430870, 1615995262, 3326484686, 6800794428, 13813260736, 27881653590, 55942340000, 111601021856
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 03 2018

Keywords

Comments

Convolution of the sequences A000294 and A028377.

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(k (k + 1)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A000217(k).
a(n) ~ exp(2*Pi*n^(3/4)/3 + 7*Zeta(3)*sqrt(n) / (2*Pi^2) - 49*Zeta(3)^2 * n^(1/4) / (4*Pi^5) + 22411 * Zeta(3)^3 / (392*Pi^8) - Zeta(3)/(8*Pi^2) + 1/24) * Pi^(1/24) / (sqrt(A) * 2^(25/12) * n^(61/96)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2018
G.f.: A(x) = exp( 2*Sum_{n >= 0} x^(2*n+1)/((2*n+1)*(1 - x^(2*n+1))^3) ). Cf. A000122 and A156616. - Peter Bala, Dec 23 2021

A304962 Expansion of Product_{k>=1} ((1 + x^k)/(1 - x^k))^(2^(k-1)).

Original entry on oeis.org

1, 2, 6, 18, 50, 138, 374, 994, 2610, 6778, 17414, 44346, 112034, 280970, 700038, 1733706, 4269970, 10463154, 25518198, 61962458, 149839602, 360958306, 866405702, 2072579058, 4942074082, 11748730482, 27849974598, 65837539522, 155236876018, 365125130490, 856767548022
Offset: 0

Views

Author

Ilya Gutkovskiy, May 22 2018

Keywords

Comments

Convolution of the sequences A034691 and A098407.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(add(d*
          2^(d-1), d=numtheory[divisors](j))*g(n-j), j=1..n)/n)
        end:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, `if`(n>1, 0, 1),
          add(b(n-i*j, i-1)*binomial(2^(i-1), j), j=0..n/i))
        end:
    a:= n-> add(g(n-j)*b(j$2), j=0..n):
    seq(a(n), n=0..35);  # Alois P. Heinz, May 22 2018
    # Maple program to compute c(n) from a(n) or a(n) from c(n).
    with(numtheory):
    andrews:=proc(liste) local n,z,serie,ls,i,d,aaa;
       n:=nops(liste);
    aaa:=liste;
    serie:=listtoseries(aaa,z,ogf):
    ls:=series(ln(serie),z,n);
       [seq(coeff(ls,z,d),d=1..n)];
       [seq(elemmobius(%,i),i=1..n-1)]
    end:
    swerdna:=proc(liste) local n,i,z;
      n:=nops(liste);
      series(convert([seq((1-z^i)^(-liste[i]),i=1..n)],`*`),z,n);
      [seq(coeff(%,z,i),i=0..n-1)]
    end:
    elemmobius:=proc(liste,d) local k,rep;
       rep:=0;
       for k in divisors(d) do
          rep:=rep+liste[k]*mobius(iquo(d,k))/iquo(d,k)
       od;
       rep
    end:
    # Here andrews() finds the c(n) and swerdna() finds the a(n) if the c(n) are known.
    # For ordinary partitions the c(n) are [1,1,1,1,1, ...].
    # Simon Plouffe, Jun 20 2018
  • Mathematica
    nmax = 30; CoefficientList[Series[Product[((1 + x^k)/(1 - x^k))^(2^(k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A011782(k).
Euler transform of c(n) with g.f.: -x*(-2*x^2-x+2)/(-4*x^3+2*x^2+2*x-1). - Simon Plouffe, Jun 20 2018
a(n) ~ A247003 * 2^(n-1) * exp(2*sqrt(n) - 1/2 + c) / (sqrt(Pi)*n^(3/4)), where c = Sum_{k>=2} -(-1)^k / (k*(2^k-2)) = -0.207530918644117743551169251314627032... - Vaclav Kotesovec, Sep 15 2021
Previous Showing 31-40 of 50 results. Next