A157156
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 43, 43, 1, 1, 259, 806, 259, 1, 1, 1555, 11720, 11720, 1555, 1, 1, 9331, 151215, 338770, 151215, 9331, 1, 1, 55987, 1828221, 7892635, 7892635, 1828221, 55987, 1, 1, 335923, 21286168, 162474781, 304389070, 162474781, 21286168, 335923, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 43, 43, 1;
1, 259, 806, 259, 1;
1, 1555, 11720, 11720, 1555, 1;
1, 9331, 151215, 338770, 151215, 9331, 1;
1, 55987, 1828221, 7892635, 7892635, 1828221, 55987, 1;
1, 335923, 21286168, 162474781, 304389070, 162474781, 21286168, 335923, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157156
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,5) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157207
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 33, 94, 33, 1, 1, 72, 442, 442, 72, 1, 1, 151, 1752, 3818, 1752, 151, 1, 1, 310, 6306, 25358, 25358, 6306, 310, 1, 1, 629, 21390, 144524, 268852, 144524, 21390, 629, 1, 1, 1268, 69822, 746744, 2312836, 2312836, 746744, 69822, 1268, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 14, 14, 1;
1, 33, 94, 33, 1;
1, 72, 442, 442, 72, 1;
1, 151, 1752, 3818, 1752, 151, 1;
1, 310, 6306, 25358, 25358, 6306, 310, 1;
1, 629, 21390, 144524, 268852, 144524, 21390, 629, 1;
1, 1268, 69822, 746744, 2312836, 2312836, 746744, 69822, 1268, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
def f(n,k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157208
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 31, 31, 1, 1, 102, 342, 102, 1, 1, 317, 2548, 2548, 317, 1, 1, 964, 16001, 37724, 16001, 964, 1, 1, 2907, 91877, 423365, 423365, 91877, 2907, 1, 1, 8738, 501032, 4070208, 7922362, 4070208, 501032, 8738, 1, 1, 26233, 2647858, 35556134, 119460466, 119460466, 35556134, 2647858, 26233, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 31, 31, 1;
1, 102, 342, 102, 1;
1, 317, 2548, 2548, 317, 1;
1, 964, 16001, 37724, 16001, 964, 1;
1, 2907, 91877, 423365, 423365, 91877, 2907, 1;
1, 8738, 501032, 4070208, 7922362, 4070208, 501032, 8738, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
def f(n,k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n,k,m): # A157208
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157209
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 11, 1, 1, 54, 54, 1, 1, 229, 822, 229, 1, 1, 932, 8368, 8368, 932, 1, 1, 3747, 72066, 174758, 72066, 3747, 1, 1, 15010, 570006, 2759750, 2759750, 570006, 15010, 1, 1, 60065, 4297714, 37366190, 73850596, 37366190, 4297714, 60065, 1, 1, 240288, 31495488, 460448520, 1591033788, 1591033788, 460448520, 31495488, 240288, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 11, 1;
1, 54, 54, 1;
1, 229, 822, 229, 1;
1, 932, 8368, 8368, 932, 1;
1, 3747, 72066, 174758, 72066, 3747, 1;
1, 15010, 570006, 2759750, 2759750, 570006, 15010, 1;
1, 60065, 4297714, 37366190, 73850596, 37366190, 4297714, 60065, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
def f(n,k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n,k,m): # A157209
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157210
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 19, 42, 19, 1, 1, 42, 186, 186, 42, 1, 1, 89, 730, 1362, 730, 89, 1, 1, 184, 2640, 8540, 8540, 2640, 184, 1, 1, 375, 9030, 47810, 79952, 47810, 9030, 375, 1, 1, 758, 29722, 246530, 652460, 652460, 246530, 29722, 758, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 8, 8, 1;
1, 19, 42, 19, 1;
1, 42, 186, 186, 42, 1;
1, 89, 730, 1362, 730, 89, 1;
1, 184, 2640, 8540, 8540, 2640, 184, 1;
1, 375, 9030, 47810, 79952, 47810, 9030, 375, 1;
1, 758, 29722, 246530, 652460, 652460, 246530, 29722, 758, 1;
1, 1525, 95238, 1196806, 4796770, 7429760, 4796770, 1196806, 95238, 1525, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157268,
A157272,
A157273,
A157274,
A157275.
-
f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
def f(n,k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n,k,m): # A157210
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157212
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = k if k <= floor(n/2) otherwise n-k, and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 24, 24, 1, 1, 103, 306, 103, 1, 1, 422, 3028, 3028, 422, 1, 1, 1701, 26064, 57806, 26064, 1701, 1, 1, 6820, 207132, 889640, 889640, 207132, 6820, 1, 1, 27299, 1569298, 11975936, 22436968, 11975936, 1569298, 27299, 1, 1, 109218, 11544744, 147711834, 472619880, 472619880, 147711834, 11544744, 109218, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 24, 24, 1;
1, 103, 306, 103, 1;
1, 422, 3028, 3028, 422, 1;
1, 1701, 26064, 57806, 26064, 1701, 1;
1, 6820, 207132, 889640, 889640, 207132, 6820, 1;
1, 27299, 1569298, 11975936, 22436968, 11975936, 1569298, 27299, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157268,
A157272,
A157273,
A157274,
A157275.
-
f[n_,k_]:= If[k<=Floor[n/2], k, n-k];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
def f(n,k): return k if (k <= n//2) else n-k
@CachedFunction
def T(n,k,m): # A157212
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jan 10 2022
A157268
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2^k if k <= floor(n/2) otherwise 2^(n-k), and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5856, 2413, 182, 1, 1, 373, 8679, 40337, 40337, 8679, 373, 1, 1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1, 1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 17, 17, 1;
1, 40, 126, 40, 1;
1, 87, 606, 606, 87, 1;
1, 182, 2413, 5856, 2413, 182, 1;
1, 373, 8679, 40337, 40337, 8679, 373, 1;
1, 756, 29376, 232726, 497066, 232726, 29376, 756, 1;
1, 1523, 95668, 1205968, 4527078, 4527078, 1205968, 95668, 1523, 1;
Cf.
A007318 (m=0), this sequence (m=1).
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157272,
A157273,
A157274,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2^k, 2^(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
-
def f(n,k): return 2^k if (k <= n//2) else 2^(n-k)
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022
A157272
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 7, 1, 1, 20, 20, 1, 1, 47, 155, 47, 1, 1, 102, 753, 753, 102, 1, 1, 213, 3004, 7109, 3004, 213, 1, 1, 436, 10800, 48727, 48727, 10800, 436, 1, 1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1, 1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 7, 1;
1, 20, 20, 1;
1, 47, 155, 47, 1;
1, 102, 753, 753, 102, 1;
1, 213, 3004, 7109, 3004, 213, 1;
1, 436, 10800, 48727, 48727, 10800, 436, 1;
1, 883, 36517, 280736, 551251, 280736, 36517, 883, 1;
1, 1778, 118795, 1454163, 4879214, 4879214, 1454163, 118795, 1778, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 04 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 04 2022
A157274
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 84, 84, 1, 1, 355, 1431, 355, 1, 1, 1442, 14827, 14827, 1442, 1, 1, 5793, 127860, 326591, 127860, 5793, 1, 1, 23200, 1009338, 5239457, 5239457, 1009338, 23200, 1, 1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 84, 84, 1;
1, 355, 1431, 355, 1;
1, 1442, 14827, 14827, 1442, 1;
1, 5793, 127860, 326591, 127860, 5793, 1;
1, 23200, 1009338, 5239457, 5239457, 1009338, 23200, 1;
1, 92831, 7593061, 71229038, 145043839, 71229038, 7593061, 92831, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157275
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 17, 17, 1, 1, 40, 126, 40, 1, 1, 87, 606, 606, 87, 1, 1, 182, 2413, 5604, 2413, 182, 1, 1, 373, 8679, 38117, 38117, 8679, 373, 1, 1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1, 1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 17, 17, 1;
1, 40, 126, 40, 1;
1, 87, 606, 606, 87, 1;
1, 182, 2413, 5604, 2413, 182, 1;
1, 373, 8679, 38117, 38117, 8679, 373, 1;
1, 756, 29376, 219020, 426002, 219020, 29376, 756, 1;
1, 1523, 95668, 1133786, 3749066, 3749066, 1133786, 95668, 1523, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
@CachedFunction
def T(n,k,m): # A157275
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022