A157273
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k+1 if k <= floor(n/2) otherwise 2*(n-k)+1, and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 12, 1, 1, 47, 47, 1, 1, 154, 590, 154, 1, 1, 477, 4498, 4498, 477, 1, 1, 1448, 28323, 71232, 28323, 1448, 1, 1, 4363, 162313, 816503, 816503, 162313, 4363, 1, 1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1, 1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 12, 1;
1, 47, 47, 1;
1, 154, 590, 154, 1;
1, 477, 4498, 4498, 477, 1;
1, 1448, 28323, 71232, 28323, 1448, 1;
1, 4363, 162313, 816503, 816503, 162313, 4363, 1;
1, 13110, 882764, 7897486, 15979230, 7897486, 882764, 13110, 1;
1, 39353, 4654100, 69030716, 245382470, 245382470, 69030716, 4654100, 39353, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157275,
A157277,
A157278.
-
f[n_,k_]:= If[k<=Floor[n/2], 2*k+1, 2*(n-k)+1];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Feb 05 2022 *)
-
def f(n,k): return 2*k+1 if (k <= n//2) else 2*(n-k)+1
@CachedFunction
def T(n,k,m): # A157207
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 05 2022
A157147
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 15, 15, 1, 1, 37, 110, 37, 1, 1, 83, 568, 568, 83, 1, 1, 177, 2415, 5534, 2415, 177, 1, 1, 367, 9137, 41027, 41027, 9137, 367, 1, 1, 749, 32104, 255155, 498814, 255155, 32104, 749, 1, 1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1
Offset: 0
1;
1, 1;
1, 5, 1;
1, 15, 15, 1;
1, 37, 110, 37, 1;
1, 83, 568, 568, 83, 1;
1, 177, 2415, 5534, 2415, 177, 1;
1, 367, 9137, 41027, 41027, 9137, 367, 1;
1, 749, 32104, 255155, 498814, 255155, 32104, 749, 1;
1, 1515, 107442, 1409814, 4845540, 4845540, 1409814, 107442, 1515, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157147:= proc(n,k)
option remember;
if k < 0 or k> n then 0;
elif k = 0 or k = n then 1;
else (n-k+1)*procname(n-1,k-1) +(k+1)*procname(n-1,k) +k*(n-k)*procname(n-2,k-1);
end if;
end proc:
seq(seq(A157147(n,k),k=0..n),n=0..10); # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
def T(n,k,m): # A157147
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022
A157148
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 33, 33, 1, 1, 112, 394, 112, 1, 1, 353, 3150, 3150, 353, 1, 1, 1080, 20719, 51192, 20719, 1080, 1, 1, 3265, 122535, 620415, 620415, 122535, 3265, 1, 1, 9824, 681040, 6312360, 12805614, 6312360, 681040, 9824, 1, 1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 33, 33, 1;
1, 112, 394, 112, 1;
1, 353, 3150, 3150, 353, 1;
1, 1080, 20719, 51192, 20719, 1080, 1;
1, 3265, 122535, 620415, 620415, 122535, 3265, 1;
1, 9824, 681040, 6312360, 12805614, 6312360, 681040, 9824, 1;
1, 29505, 3643980, 57451300, 209503086, 209503086, 57451300, 3643980, 29505, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157148 := proc(n,k)
option remember;
if k < 0 or k> n then 0;
elif k = 0 or k = n then 1;
else (2*(n-k)+1)*procname(n-1,k-1) + (2*k+1)*procname(n-1,k) + 2*k*(n-k)*procname(n-2,k-1);
end if;
end proc:
seq(seq(A157148(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157148
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157149
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 11, 1, 1, 57, 57, 1, 1, 247, 930, 247, 1, 1, 1013, 10006, 10006, 1013, 1, 1, 4083, 89139, 225230, 89139, 4083, 1, 1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1, 1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 11, 1;
1, 57, 57, 1;
1, 247, 930, 247, 1;
1, 1013, 10006, 10006, 1013, 1;
1, 4083, 89139, 225230, 89139, 4083, 1;
1, 16369, 719691, 3771323, 3771323, 719691, 16369, 1;
1, 65519, 5495836, 53239541, 108865438, 53239541, 5495836, 65519, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157149 := proc(n,k)
option remember;
if k < 0 or k> n then 0;
elif k = 0 or k = n then 1;
else (3*(n-k)+1)*procname(n-1,k-1) + (3*k+1)*procname(n-1,k) + 3*k*(n-k)*procname(n-2,k-1);
end if;
end proc:
seq(seq(A157149(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157149
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157150
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 14, 1, 1, 87, 87, 1, 1, 460, 1790, 460, 1, 1, 2333, 24178, 24178, 2333, 1, 1, 11706, 271983, 693068, 271983, 11706, 1, 1, 58579, 2786993, 14794139, 14794139, 2786993, 58579, 1, 1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 87, 87, 1;
1, 460, 1790, 460, 1;
1, 2333, 24178, 24178, 2333, 1;
1, 11706, 271983, 693068, 271983, 11706, 1;
1, 58579, 2786993, 14794139, 14794139, 2786993, 58579, 1;
1, 292952, 27109300, 267169640, 547357078, 267169640, 27109300, 292952, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157150:= proc(n, k);
if k<0 or nA157150(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157150
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157151
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 5, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 17, 1, 1, 123, 123, 1, 1, 769, 3046, 769, 1, 1, 4655, 49500, 49500, 4655, 1, 1, 27981, 673015, 1721070, 673015, 27981, 1, 1, 167947, 8363421, 44640435, 44640435, 8363421, 167947, 1, 1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 17, 1;
1, 123, 123, 1;
1, 769, 3046, 769, 1;
1, 4655, 49500, 49500, 4655, 1;
1, 27981, 673015, 1721070, 673015, 27981, 1;
1, 167947, 8363421, 44640435, 44640435, 8363421, 167947, 1;
1, 1007753, 98882848, 982172031, 2012583870, 982172031, 98882848, 1007753, 1;
Cf.
A157152,
A157153,
A157154,
A157155,
A157156,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
A157151:= proc(n, k)
if k<0 or nA157151(n, k), k=0..n), n=0..10); # R. J. Mathar, Feb 06 2015
-
T[n_, k_, m_]:= T[n,k,m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*k*(n-k)*T[n-2, k-1, m]];
Table[T[n,k,5], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
def T(n,k,m): # A157147
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,5) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 09 2022
A157152
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 15, 30, 15, 1, 1, 31, 108, 108, 31, 1, 1, 63, 359, 594, 359, 63, 1, 1, 127, 1145, 2875, 2875, 1145, 127, 1, 1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1, 1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 7, 7, 1;
1, 15, 30, 15, 1;
1, 31, 108, 108, 31, 1;
1, 63, 359, 594, 359, 63, 1;
1, 127, 1145, 2875, 2875, 1145, 127, 1;
1, 255, 3568, 12985, 19246, 12985, 3568, 255, 1;
1, 511, 10966, 56306, 116640, 116640, 56306, 10966, 511, 1;
1, 1023, 33417, 238024, 665702, 918530, 665702, 238024, 33417, 1023, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,1], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 09 2022 *)
-
@CachedFunction
def T(n,k,m): # A157152
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,1) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 09 2022
A157153
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 13, 13, 1, 1, 40, 98, 40, 1, 1, 121, 614, 614, 121, 1, 1, 364, 3519, 6832, 3519, 364, 1, 1, 1093, 19179, 64759, 64759, 19179, 1093, 1, 1, 3280, 101368, 558712, 947038, 558712, 101368, 3280, 1, 1, 9841, 525436, 4538324, 12078814, 12078814, 4538324, 525436, 9841, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 4, 1;
1, 13, 13, 1;
1, 40, 98, 40, 1;
1, 121, 614, 614, 121, 1;
1, 364, 3519, 6832, 3519, 364, 1;
1, 1093, 19179, 64759, 64759, 19179, 1093, 1;
1, 3280, 101368, 558712, 947038, 558712, 101368, 3280, 1;
1, 9841, 525436, 4538324, 12078814, 12078814, 4538324, 525436, 9841, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,2], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157153
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,2) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157154
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 3, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 21, 21, 1, 1, 85, 234, 85, 1, 1, 341, 2110, 2110, 341, 1, 1, 1365, 17163, 35882, 17163, 1365, 1, 1, 5461, 131751, 505979, 505979, 131751, 5461, 1, 1, 21845, 976876, 6395471, 11433118, 6395471, 976876, 21845, 1, 1, 87381, 7089360, 75400800, 220599330, 220599330, 75400800, 7089360, 87381, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 5, 1;
1, 21, 21, 1;
1, 85, 234, 85, 1;
1, 341, 2110, 2110, 341, 1;
1, 1365, 17163, 35882, 17163, 1365, 1;
1, 5461, 131751, 505979, 505979, 131751, 5461, 1;
1, 21845, 976876, 6395471, 11433118, 6395471, 976876, 21845, 1;
1, 87381, 7089360, 75400800, 220599330, 220599330, 75400800, 7089360, 87381, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,3], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157154
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,3) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
A157155
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) - m*k*(n-k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1 and m = 4, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 156, 462, 156, 1, 1, 781, 5442, 5442, 781, 1, 1, 3906, 57263, 124860, 57263, 3906, 1, 1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1, 1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 31, 31, 1;
1, 156, 462, 156, 1;
1, 781, 5442, 5442, 781, 1;
1, 3906, 57263, 124860, 57263, 3906, 1;
1, 19531, 566153, 2335435, 2335435, 566153, 19531, 1;
1, 97656, 5396164, 38814088, 71413750, 38814088, 5396164, 97656, 1;
Cf.
A157147,
A157148,
A157149,
A157150,
A157151,
A157207,
A157208,
A157209,
A157210,
A157211,
A157212,
A157268,
A157272,
A157273,
A157274,
A157275.
-
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] - m*k*(n-k)*T[n-2,k-1,m]];
Table[T[n,k,4], {n,0,10}, {k,0,n}]//Flatten (* modified by G. C. Greubel, Jan 10 2022 *)
-
@CachedFunction
def T(n,k,m): # A157155
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) - m*k*(n-k)*T(n-2,k-1,m)
flatten([[T(n,k,4) for k in (0..n)] for n in (0..20)]) # G. C. Greubel, Jan 10 2022
Showing 1-10 of 22 results.