A337945
Numbers m with a solution (s,t,k) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.
Original entry on oeis.org
2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 118, 120
Offset: 1
8 is in the sequence since it has the solutions (s,t,k) = (4,4,4) and (2,6,5) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.
9 is in the sequence since it has the solution (s,t,k) = (3,6,5) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.
-
# Quite inefficient compared to the conjectured formula.
KD := (n, k) -> Physics:-KroneckerDelta[n, k]:
S := k -> local i, j; add(add(KD((i^2 + (k - i)^2)/j , k), j = 1..k-1),
i = 1..floor(k/2)): select(k -> S(k) > 0, [seq(k, k = 1..40)]); # Peter Luschny, Jun 08 2023
-
Table[If[Sum[Sum[KroneckerDelta[(i^2 + (n - i)^2)/k, n], {k, n - 1}], {i, Floor[n/2]}] > 0, n, {}], {n, 120}] // Flatten
A047817
Denominators of Hurwitz numbers H_n (coefficients in expansion of Weierstrass P-function).
Original entry on oeis.org
10, 10, 130, 170, 10, 130, 290, 170, 4810, 410, 10, 2210, 530, 290, 7930, 170, 10, 351130, 10, 6970, 3770, 890, 10, 214370, 1010, 530, 524290, 557090, 10, 325130, 10, 170, 130, 1370, 290, 5969210, 1490, 10, 1081730, 6970, 10, 3770
Offset: 1
Hurwitz numbers H_1, H_2, ... = 1/10, 3/10, 567/130, 43659/170, 392931/10, ...
- F. Lemmermeyer, Reciprocity Laws, Springer-Verlag, 2000; see p. 276.
- T. D. Noe, Table of n, a(n) for n = 1..1000
- L. Carlitz, The coefficients of the lemniscate function, Math. Comp., 16 (1962), 475-478.
- A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII.
- A. Hurwitz, Über die Entwicklungskoeffizienten der lemniskatischen Funktionen, Math. Ann., 51 (1899), 196-226; Mathematische Werke. Vols. 1 and 2, Birkhäuser, Basel, 1962-1963, see Vol. 2, No. LXVII. [Annotated scanned copy]
- N. M. Katz, The Congruences of Clausen - von Staudt and Kummer for Bernoulli-Hurwitz Numbers, Mathematische Annalen 216, 1-4 (1975)
- Alexei Pantchichkine, Constructions of p-adic L-functions and admissible measures for Hermitian modular forms, Number Theory [math.NT], 2018.
- Alexei Pantchichkine, Algebraic differential operators on arithmetic automorphic forms, modular distributions, p-adic interpolation of their critical l values via BGG modules and Hecke algebras, J. Math. Math. Sci., Thang Long Univ. (Viet Nam, 2022) Vol. 1, No. 4, 1-26.
- Index to divisibility sequences
-
H := proc(n) local k; option remember; if n = 1 then 1/10 else 3*add((4*k - 1)*(4*n - 4*k - 1)*binomial(4*n, 4*k)*H(k)*H(n - k), k = 1 .. n - 1)/( (2*n - 3)*(16*n^2 - 1)) fi; end;
a := n -> denom(H(n));
# Implementation based on Hurwitz's extension of Clausen's theorem:
GenClausen := proc(n) local k,S; map(k->k+1, numtheory[divisors](n));
S := select(p-> isprime(p) and p mod 4 = 1, %);
if S <> {} then 2*mul(k,k=S) else NULL fi end:
A047817_list := proc(n) local i; seq(GenClausen(i),i=1..4*n) end;
A047817_list(42); # Peter Luschny, Oct 03 2011
# Implementation based on Weierstrass's P-function:
c := n -> (n*(4*n-2)!/(2^(4*n-2)))*coeff(series(WeierstrassP(z,4,0),z, 4*n+2),z,4*n-2); a := n -> denom(c(n)); seq(a(n), n=1..42); # Peter Luschny, Aug 18 2014
-
a[1] = 1/10; a[n_] := a[n] = (3/(2*n - 3)/(16*n^2 - 1))* Sum[(4*k - 1)*(4*n - 4*k - 1)*Binomial[4*n, 4*k]*a[k]* a[n - k], {k, 1, n - 1}]; Denominator[ Table[a[n], {n, 1, 42}]] (* Jean-François Alcover, Oct 18 2011, after PARI *)
a[ n_] := If[ n < 1, 0, Denominator[ 2^(-4 n) (4 n)! SeriesCoefficient[ 1 - x WeierstrassZeta[ x, {4, 0}], {x, 0, 4 n}]]]; (* Michael Somos, Mar 05 2015 *)
-
do(lim)=v=vector(lim); v[1]=1/10; for(n=2,lim,v[n]=3/(2*n-3)/(16*n^2-1)*sum(k=1,n-1,(4*k-1)*(4*n-4*k-1)*binomial(4*n,4*k)*v[k]*v[n-k])) \\ Henri Cohen, Mar 18 2002
Original entry on oeis.org
1, 1, 2, 1, 6, 1, 6, 1, 30, 1, 6, 1, 210, 1, 6, 1, 30, 1, 42, 1, 330, 1, 6, 1, 2730, 1, 6, 1, 30, 1, 462, 1, 510, 1, 6, 1, 51870, 1, 6, 1, 330, 1, 42, 1, 690, 1, 6, 1, 46410, 1, 66, 1, 30, 1, 798, 1, 870, 1, 6, 1, 930930, 1, 6, 1, 510, 1, 966, 1, 30, 1, 66, 1, 1919190, 1, 6, 1, 30, 1, 42, 1
Offset: 1
-
A027642 := proc(n) denom(bernoulli(n)) ; end:
A089026 := proc(n) if isprime(n) then n; else 1; end if; end proc:
A166120 := proc(n) A027642(n-1)/A089026(n) ; end proc: seq(A166120(n), n=1..80) ; # R. J. Mathar, Mar 25 2010
# Second program, assuming offset 0:
clausen := proc(n) if irem(n,2)=1 then 1 else numtheory[divisors](n) minus {n};
map(i -> i+1, %); select(isprime, %); mul(i, i=%) fi end:
seq(clausen(n), n = 0..79); # Peter Luschny, Aug 20 2022
A346463
a(n) = 6 * GaussBinomial(2*n, 2, 2) / denominator(Bernoulli(2*n, 1)).
Original entry on oeis.org
0, 1, 7, 93, 2159, 15841, 6141, 44731051, 8421119, 86113647, 3331843885, 127479517837, 103104368637, 750599904340651, 82824819807611, 80500035008073, 36170086393773823, 49191317521302203051, 2460603943675971, 12592977287514948283051, 89351501819019263845
Offset: 0
-
a := n -> (4^n - 2)*(4^n - 1) / mul(i, i=select(isprime, map(i->i+1, numtheory[divisors] (2*n)))): seq(a(n), n = 0..20);
-
Table[6 QBinomial[2 n, 2, 2] / Denominator[BernoulliB[2 n, 1]], {n, 0, 20}]
A363395
a(n) = n * Clausen(n, 1) / Clausen(n, 0).
Original entry on oeis.org
0, 2, 6, 2, 60, 2, 42, 2, 120, 6, 66, 2, 5460, 2, 6, 2, 4080, 2, 2394, 2, 660, 2, 138, 2, 10920, 10, 6, 18, 1740, 2, 14322, 2, 8160, 2, 6, 2, 11515140, 2, 6, 2, 54120, 2, 1806, 2, 1380, 6, 282, 2, 371280, 14, 330, 2, 3180, 2, 7182, 2, 3480, 2, 354, 2, 113573460
Offset: 0
-
# Using function 'Clausen' from A160014.
a := n -> n * Clausen(n, 1) / Clausen(n, 0):
seq(a(n), n = 0..60);
A363402
a(n) = n * (4^n - 2^n) / Clausen(n, 0).
Original entry on oeis.org
0, 2, 12, 56, 480, 992, 4032, 16256, 261120, 784896, 1047552, 4192256, 33546240, 67100672, 268419072, 1073709056, 34359214080, 17179738112, 206157643776, 274877382656, 2199021158400, 4398044413952, 17592181850112, 70368735789056, 1125899839733760, 5629499366440960
Offset: 0
A363403
a(n) = (4^n - 2^n) / Clausen(n, 1).
Original entry on oeis.org
0, 1, 2, 28, 8, 496, 96, 8128, 2176, 130816, 15872, 2096128, 6144, 33550336, 44736512, 536854528, 8421376, 8589869056, 86114304, 137438691328, 3331850240, 2199022206976, 127479578624, 35184367894528, 103104380928, 562949936644096, 750599926710272, 9007199187632128
Offset: 0
A368093
Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0
Array A(m, n) starts:
[0] 1, 1, 2, 6, 12, 60, 360, 2520, ... A048803
[1] 1, 2, 12, 24, 720, 1440, 60480, 120960, ... A091137
[2] 1, 3, 9, 135, 405, 8505, 127575, 382725, ... A368092
[3] 1, 1, 5, 5, 175, 175, 875, 875, ...
[4] 1, 5, 25, 875, 4375, 21875, 765625, 42109375, ...
[5] 1, 1, 7, 7, 49, 49, 3773, 3773, ...
[6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
[7] 1, 1, 1, 1, 11, 11, 143, 143, ...
[8] 1, 1, 1, 11, 11, 143, 1573, 1573, ...
[9] 1, 1, 11, 11, 1573, 1573, 17303, 17303, ...
-
from functools import cache
def Clausen(n, k):
return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
@cache
def CumProdClausen(m, n):
return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])
A165823
Large denominators of Bernoulli numbers. Mix A002445, 2*A141421 .
Original entry on oeis.org
1, 2, 6, 24, 30, 1440, 42, 120960, 30, 7257600, 66, 958003200, 2730, 5230697472000, 6, 62768369664000, 510, 64023737057280000
Offset: 0
A213621
The denominator of the Bernoulli polynomial B(n,x) divided by the Clausen number C(n), A144845(n)/A141056(n).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 1, 105, 5, 3, 1, 15, 5, 105, 7, 165, 5, 15, 1, 273, 7, 7, 1, 15, 1, 231, 77, 1785, 35, 3, 1, 25935, 455, 105, 7, 1155, 55, 1155, 7, 2415, 35, 105, 1, 3315, 221, 429, 11, 165, 55, 399, 19, 435, 5, 15, 1, 465465, 5005, 2145
Offset: 0
-
# Clausen(n,k) defined in A160014.
seq(denom(bernoulli(i,x))/Clausen(i,1), i=0..63);
-
c[0, ] = 1; c[n, k_] := Times @@ (Select[Divisors[n], PrimeQ[#+k]&] + k);
Table[Denominator[BernoulliB[i, x] // Together]/c[i, 1], {i, 0, 63}] (* Jean-François Alcover, Aug 02 2019 *)
Comments