cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 38 results. Next

A337945 Numbers m with a solution (s,t,k) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.

Original entry on oeis.org

2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 108, 110, 112, 114, 116, 117, 118, 120
Offset: 1

Views

Author

Wesley Ivan Hurt, Oct 01 2020

Keywords

Examples

			8 is in the sequence since it has the solutions (s,t,k) = (4,4,4) and (2,6,5) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.
9 is in the sequence since it has the solution (s,t,k) = (3,6,5) such that s^2 + t^2 = k*m, s + t = m, 1 <= s <= t and 1 <= k <= m - 1.
		

Crossrefs

Programs

  • Maple
    # Quite inefficient compared to the conjectured formula.
    KD := (n, k) -> Physics:-KroneckerDelta[n, k]:
    S := k -> local i, j; add(add(KD((i^2 + (k - i)^2)/j , k), j = 1..k-1),
    i = 1..floor(k/2)): select(k -> S(k) > 0, [seq(k, k = 1..40)]); # Peter Luschny, Jun 08 2023
  • Mathematica
    Table[If[Sum[Sum[KroneckerDelta[(i^2 + (n - i)^2)/k, n], {k, n - 1}], {i, Floor[n/2]}] > 0, n, {}], {n, 120}] // Flatten

Formula

k is a term <=> Sum_{i=1..floor(k/2)} Sum_{j=1..k-1} KroneckerDelta((i^2 + (k - i)^2)/j, k) > 0.
Conjecture: k is a term <=> k * Clausen(k, 1) <> 2 * Clausen(k, 0), (Clausen = A160014). In other words: k is in this sequence iff it is not an odd squarefree number. - Peter Luschny, Jun 08 2023

A047817 Denominators of Hurwitz numbers H_n (coefficients in expansion of Weierstrass P-function).

Original entry on oeis.org

10, 10, 130, 170, 10, 130, 290, 170, 4810, 410, 10, 2210, 530, 290, 7930, 170, 10, 351130, 10, 6970, 3770, 890, 10, 214370, 1010, 530, 524290, 557090, 10, 325130, 10, 170, 130, 1370, 290, 5969210, 1490, 10, 1081730, 6970, 10, 3770
Offset: 1

Views

Author

Keywords

Comments

Hurwitz showed (see Katz, eqn. 9) that a(n) = product of the prime p = 2 and the primes p of the form 4*k + 1 such that p - 1 divides 4*n. It follows that a(n) is a divisibility sequence, that is, if n | m then a(n) | a(m). - Peter Bala, Jan 08 2014

Examples

			Hurwitz numbers H_1, H_2, ... = 1/10, 3/10, 567/130, 43659/170, 392931/10, ...
		

References

  • F. Lemmermeyer, Reciprocity Laws, Springer-Verlag, 2000; see p. 276.

Crossrefs

For numerators see A002306.
Cf. A160014.

Programs

  • Maple
    H := proc(n) local k; option remember; if n = 1 then 1/10 else 3*add((4*k - 1)*(4*n - 4*k - 1)*binomial(4*n, 4*k)*H(k)*H(n - k), k = 1 .. n - 1)/( (2*n - 3)*(16*n^2 - 1)) fi; end;
    a := n -> denom(H(n));
    # Implementation based on Hurwitz's extension of Clausen's theorem:
    GenClausen := proc(n) local k,S; map(k->k+1, numtheory[divisors](n));
        S := select(p-> isprime(p) and p mod 4 = 1, %);
        if S <> {} then 2*mul(k,k=S) else NULL fi end:
    A047817_list := proc(n) local i; seq(GenClausen(i),i=1..4*n) end;
    A047817_list(42); # Peter Luschny, Oct 03 2011
    # Implementation based on Weierstrass's P-function:
    c := n -> (n*(4*n-2)!/(2^(4*n-2)))*coeff(series(WeierstrassP(z,4,0),z, 4*n+2),z,4*n-2); a := n -> denom(c(n)); seq(a(n), n=1..42); # Peter Luschny, Aug 18 2014
  • Mathematica
    a[1] = 1/10; a[n_] := a[n] = (3/(2*n - 3)/(16*n^2 - 1))* Sum[(4*k - 1)*(4*n - 4*k - 1)*Binomial[4*n, 4*k]*a[k]* a[n - k], {k, 1, n - 1}]; Denominator[ Table[a[n], {n, 1, 42}]] (* Jean-François Alcover, Oct 18 2011, after PARI *)
    a[ n_] := If[ n < 1, 0, Denominator[ 2^(-4 n) (4 n)! SeriesCoefficient[ 1 - x WeierstrassZeta[ x, {4, 0}], {x, 0, 4 n}]]]; (* Michael Somos, Mar 05 2015 *)
  • PARI
    do(lim)=v=vector(lim); v[1]=1/10; for(n=2,lim,v[n]=3/(2*n-3)/(16*n^2-1)*sum(k=1,n-1,(4*k-1)*(4*n-4*k-1)*binomial(4*n,4*k)*v[k]*v[n-k])) \\ Henri Cohen, Mar 18 2002

Formula

Let P be the Weierstrass P-function satisfying P'^2 = 4*P^3 - 4*P. Then P(z) = 1/z^2 + Sum_{n>=1} 2^(4n)*H_n*z^(4n-2)/(4n*(4n-2)!).
Sum_{ (r, s) != (0, 0) } 1/(r+si)^(4n) = (2w)^(4n)*H_n/(4n)! where w = 2 * Integral_{0..1} dx/(sqrt(1-x^4)).
See PARI line for recurrence.

A166120 a(n) = A027642(n-1) / A089026(n).

Original entry on oeis.org

1, 1, 2, 1, 6, 1, 6, 1, 30, 1, 6, 1, 210, 1, 6, 1, 30, 1, 42, 1, 330, 1, 6, 1, 2730, 1, 6, 1, 30, 1, 462, 1, 510, 1, 6, 1, 51870, 1, 6, 1, 330, 1, 42, 1, 690, 1, 6, 1, 46410, 1, 66, 1, 30, 1, 798, 1, 870, 1, 6, 1, 930930, 1, 6, 1, 510, 1, 966, 1, 30, 1, 66, 1, 1919190, 1, 6, 1, 30, 1, 42, 1
Offset: 1

Views

Author

Paul Curtz, Oct 07 2009

Keywords

Comments

As in A166062, the offset is rather arbitrary.
The sequence contains numbers like 210 which are not in A006954.
One could also consider dividing by the largest prime divisor of A027642 instead of A089026, which yields 1, 1, 2, 1, 6, 1, 6, 1, 6, 1, 6, 1, 210, 1, 2, 1, 30, 1, 42, 1, 30, ... as an alternative version.
These are the Clausen numbers based on the proper divisors of n whereas the classical Clausen numbers A160014 are based on all divisors of n. (The proper divisors are the divisors of n that are less than n.) - Peter Luschny, Aug 20 2022

Crossrefs

Programs

  • Maple
    A027642 := proc(n) denom(bernoulli(n)) ; end:
    A089026 := proc(n) if isprime(n) then n; else 1; end if; end proc:
    A166120 := proc(n) A027642(n-1)/A089026(n) ; end proc: seq(A166120(n), n=1..80) ; # R. J. Mathar, Mar 25 2010
    # Second program, assuming offset 0:
    clausen := proc(n) if irem(n,2)=1 then 1 else numtheory[divisors](n) minus {n};
    map(i -> i+1, %); select(isprime, %); mul(i, i=%) fi end:
    seq(clausen(n), n = 0..79); # Peter Luschny, Aug 20 2022

Extensions

Extended by R. J. Mathar, Mar 25 2010

A346463 a(n) = 6 * GaussBinomial(2*n, 2, 2) / denominator(Bernoulli(2*n, 1)).

Original entry on oeis.org

0, 1, 7, 93, 2159, 15841, 6141, 44731051, 8421119, 86113647, 3331843885, 127479517837, 103104368637, 750599904340651, 82824819807611, 80500035008073, 36170086393773823, 49191317521302203051, 2460603943675971, 12592977287514948283051, 89351501819019263845
Offset: 0

Views

Author

Peter Luschny, Jul 19 2021

Keywords

Crossrefs

Programs

  • Maple
    a := n -> (4^n - 2)*(4^n - 1) / mul(i, i=select(isprime, map(i->i+1, numtheory[divisors] (2*n)))): seq(a(n), n = 0..20);
  • Mathematica
    Table[6 QBinomial[2 n, 2, 2] / Denominator[BernoulliB[2 n, 1]], {n, 0, 20}]

Formula

a(n) = (4^n - 2)*(4^n - 1)/Clausen(2*n, 1), where Clausen(n, k) = A160014(n, k).

A363395 a(n) = n * Clausen(n, 1) / Clausen(n, 0).

Original entry on oeis.org

0, 2, 6, 2, 60, 2, 42, 2, 120, 6, 66, 2, 5460, 2, 6, 2, 4080, 2, 2394, 2, 660, 2, 138, 2, 10920, 10, 6, 18, 1740, 2, 14322, 2, 8160, 2, 6, 2, 11515140, 2, 6, 2, 54120, 2, 1806, 2, 1380, 6, 282, 2, 371280, 14, 330, 2, 3180, 2, 7182, 2, 3480, 2, 354, 2, 113573460
Offset: 0

Views

Author

Peter Luschny, Jun 08 2023

Keywords

Crossrefs

Programs

  • Maple
    # Using function 'Clausen' from A160014.
    a := n -> n * Clausen(n, 1) / Clausen(n, 0):
    seq(a(n), n = 0..60);

Formula

a(n) = n * A160014(n, 1) / A160014(n, 0).

A363402 a(n) = n * (4^n - 2^n) / Clausen(n, 0).

Original entry on oeis.org

0, 2, 12, 56, 480, 992, 4032, 16256, 261120, 784896, 1047552, 4192256, 33546240, 67100672, 268419072, 1073709056, 34359214080, 17179738112, 206157643776, 274877382656, 2199021158400, 4398044413952, 17592181850112, 70368735789056, 1125899839733760, 5629499366440960
Offset: 0

Views

Author

Peter Luschny, Jun 08 2023

Keywords

Crossrefs

Programs

  • Maple
    # Using function 'Clausen' from A160014.
    a := n -> n * (4^n - 2^n) / Clausen(n, 0):
    seq(a(n), n = 0..25);

Formula

a(n) = n * A020522(n) / A160014(n, 0).

A363403 a(n) = (4^n - 2^n) / Clausen(n, 1).

Original entry on oeis.org

0, 1, 2, 28, 8, 496, 96, 8128, 2176, 130816, 15872, 2096128, 6144, 33550336, 44736512, 536854528, 8421376, 8589869056, 86114304, 137438691328, 3331850240, 2199022206976, 127479578624, 35184367894528, 103104380928, 562949936644096, 750599926710272, 9007199187632128
Offset: 0

Views

Author

Peter Luschny, Jun 08 2023

Keywords

Crossrefs

Programs

  • Maple
    # Using function 'Clausen' from A160014.
    a := n -> (4^n - 2^n) / Clausen(n, 1):
    seq(a(n), n = 0..25);

Formula

a(n) = A020522(n) / A160014(n, 1).

A368093 Cumulative products of the generalized Clausen numbers. Array read by ascending antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 12, 6, 1, 1, 9, 24, 12, 1, 5, 5, 135, 720, 60, 1, 1, 25, 5, 405, 1440, 360, 1, 7, 7, 875, 175, 8505, 60480, 2520, 1, 1, 49, 7, 4375, 175, 127575, 120960, 5040, 1, 1, 1, 343, 49, 21875, 875, 382725, 3628800, 15120
Offset: 0

Views

Author

Peter Luschny, Dec 12 2023

Keywords

Comments

A160014 are the generalized Clausen numbers, for m = 0 the formula computes the cumulative radical A048803, and for m = 1 the Hirzebruch numbers A091137.

Examples

			Array A(m, n) starts:
  [0] 1, 1,  2,   6,   12,     60,     360,      2520, ...  A048803
  [1] 1, 2, 12,  24,  720,   1440,   60480,    120960, ...  A091137
  [2] 1, 3,  9, 135,  405,   8505,  127575,    382725, ...  A368092
  [3] 1, 1,  5,   5,  175,    175,     875,       875, ...
  [4] 1, 5, 25, 875, 4375,  21875,  765625,  42109375, ...
  [5] 1, 1,  7,   7,   49,     49,    3773,      3773, ...
  [6] 1, 7, 49, 343, 2401, 184877, 1294139, 117766649, ...
  [7] 1, 1,  1,   1,   11,     11,     143,       143, ...
  [8] 1, 1,  1,  11,   11,    143,    1573,      1573, ...
  [9] 1, 1, 11,  11, 1573,   1573,   17303,     17303, ...
		

Crossrefs

Cf. A160014, A048803 (m=0), A091137 (m=1), A368092 (m=2).

Programs

  • SageMath
    from functools import cache
    def Clausen(n, k):
        return mul(s for s in map(lambda i: i+n, divisors(k)) if is_prime(s))
    @cache
    def CumProdClausen(m, n):
        return Clausen(m, n) * CumProdClausen(m, n - 1) if n > 0 else 1
    for m in range(10): print([m], [CumProdClausen(m, n) for n in range(8)])

Formula

A(m, n) = A160014(m, n) * A(m, n - 1) for n > 0 and A(m, 0) = 1.

A165823 Large denominators of Bernoulli numbers. Mix A002445, 2*A141421 .

Original entry on oeis.org

1, 2, 6, 24, 30, 1440, 42, 120960, 30, 7257600, 66, 958003200, 2730, 5230697472000, 6, 62768369664000, 510, 64023737057280000
Offset: 0

Views

Author

Paul Curtz, Sep 28 2009

Keywords

Comments

b(n)=a(2n+1)/a(2n) =2,4,48,2880,241920,145152,= 2*(1,2,24,1440,=1,2*A141421). Among other denominators, A027642,A141056,A164020. 2*A141421 is second bisection of A091137 which is linked to Bernoulli via A027760. See A160014,von Staudt-Clausen theorem.

A213621 The denominator of the Bernoulli polynomial B(n,x) divided by the Clausen number C(n), A144845(n)/A141056(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 5, 1, 3, 1, 105, 5, 3, 1, 15, 5, 105, 7, 165, 5, 15, 1, 273, 7, 7, 1, 15, 1, 231, 77, 1785, 35, 3, 1, 25935, 455, 105, 7, 1155, 55, 1155, 7, 2415, 35, 105, 1, 3315, 221, 429, 11, 165, 55, 399, 19, 435, 5, 15, 1, 465465, 5005, 2145
Offset: 0

Views

Author

Peter Luschny, Jun 16 2012

Keywords

Crossrefs

Cf. A213623.

Programs

  • Maple
    # Clausen(n,k) defined in A160014.
    seq(denom(bernoulli(i,x))/Clausen(i,1), i=0..63);
  • Mathematica
    c[0, ] = 1; c[n, k_] := Times @@ (Select[Divisors[n], PrimeQ[#+k]&] + k);
    Table[Denominator[BernoulliB[i, x] // Together]/c[i, 1], {i, 0, 63}] (* Jean-François Alcover, Aug 02 2019 *)
Previous Showing 21-30 of 38 results. Next