cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A217083 Numbers n such that (n^67-1)/(n-1) is prime.

Original entry on oeis.org

46, 122, 238, 304, 314, 315, 328, 332, 346, 372, 382, 426, 440, 491, 496, 510, 524, 528, 566, 638, 733, 826, 1016, 1054, 1071, 1214, 1309, 1338, 1388, 1401, 1457, 1512, 1536, 1582, 1624, 1718, 1773, 1814, 1816, 1825, 1952, 1985, 2021, 2072, 2308, 2349, 2449, 2481
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 2500], PrimeQ[(#^67 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^67-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217084 Numbers n such that (n^71-1)/(n-1) is prime.

Original entry on oeis.org

3, 6, 17, 24, 37, 89, 132, 374, 387, 402, 421, 435, 453, 464, 490, 516, 708, 736, 919, 947, 981, 1033, 1067, 1170, 1195, 1253, 1284, 1349, 1385, 1409, 1479, 1709, 1724, 1726, 1735, 1875, 1950, 1984, 2012, 2070, 2124, 2133, 2161, 2194, 2424, 2432, 2459, 2531, 2552
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^71 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^71-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217085 Numbers n such that (n^73-1)/(n-1) is prime.

Original entry on oeis.org

11, 15, 75, 114, 195, 215, 295, 335, 378, 559, 566, 650, 660, 832, 871, 904, 966, 1021, 1112, 1203, 1334, 1433, 1485, 1724, 1822, 1959, 1998, 2115, 2154, 2432, 2465, 2486, 2544, 2559, 2564, 2575, 2611, 2681, 2705, 2735, 2754, 2806, 2880, 3158, 3222, 3306, 3368
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^73 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^73-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217086 Numbers n such that (n^79-1)/(n-1) is prime.

Original entry on oeis.org

22, 112, 140, 158, 170, 254, 271, 330, 334, 354, 390, 483, 528, 560, 565, 714, 850, 888, 924, 929, 933, 935, 970, 1019, 1047, 1141, 1266, 1338, 1359, 1376, 1412, 1485, 1504, 1542, 1598, 1607, 1618, 1747, 1773, 1814, 1843, 2087, 2088, 2100, 2167, 2186, 2233, 2311
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^79 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^79-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217087 Numbers n such that (n^83-1)/(n-1) is prime.

Original entry on oeis.org

41, 146, 386, 593, 667, 688, 906, 927, 930, 1025, 1032, 1111, 1410, 1437, 1638, 1829, 1960, 2045, 2381, 2384, 2618, 2807, 2909, 3059, 3164, 3268, 3370, 3783, 3861, 4043, 4054, 4198, 4284, 4539, 4934, 4968, 4992, 5009, 5047, 5049, 5111, 5217, 5237, 5342, 5367
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^83 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^83-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A250177 Numbers n such that Phi_21(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

3, 6, 7, 12, 22, 27, 28, 35, 41, 59, 63, 69, 112, 127, 132, 133, 136, 140, 164, 166, 202, 215, 218, 276, 288, 307, 323, 334, 343, 377, 383, 433, 474, 479, 516, 519, 521, 532, 538, 549, 575, 586, 622, 647, 675, 680, 692, 733, 790, 815, 822, 902, 909, 911, 915, 952, 966, 1025, 1034, 1048, 1093
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494 (6), A100330 (7), A000068 (8), A153439 (9), A250392 (10), A162862 (11), A246397 (12), A217070 (13), A250174 (14), A250175 (15), A006314 (16), A217071 (17), A164989 (18), A217072 (19), A250176 (20), this sequence (21), A250178 (22), A217073 (23), A250179 (24), A250180 (25), A250181 (26), A153440 (27), A250182 (28), A217074 (29), A250183 (30), A217075 (31), A006313 (32), A250184 (33), A250185 (34), A250186 (35), A097475 (36), A217076 (37), A250187 (38), A250188 (39), A250189 (40), A217077 (41), A250190 (42), A217078 (43), A250191 (44), A250192 (45), A250193 (46), A217079 (47), A250194 (48), A250195 (49), A250196 (50), A217080 (53), A217081 (59), A217082 (61), A006315 (64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441 (81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442 (243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530 (65536), A251597 (131072), A244150 (524287), A243959 (1048576).
Cf. A085398 (Least k>1 such that Phi_n(k) is prime).

Programs

  • Mathematica
    a250177[n_] := Select[Range[n], PrimeQ@Cyclotomic[21, #] &]; a250177[1100] (* Michael De Vlieger, Dec 25 2014 *)
  • PARI
    {is(n)=isprime(polcyclo(21,n))};
    for(n=1,100, if(is(n)==1, print1(n, ", "), 0)) \\ G. C. Greubel, Apr 14 2018

A240693 Primes p such that p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 is prime.

Original entry on oeis.org

5, 17, 53, 137, 229, 389, 467, 619, 709, 787, 1091, 1103, 1213, 1249, 1433, 1459, 1601, 1993, 2029, 2039, 2087, 2089, 2393, 2687, 3217, 3299, 3529, 3547, 3691, 3793, 4019, 4091, 4099, 4231, 4507, 4561, 4679, 5351, 5399, 5471, 5521, 5581, 5669, 5783, 5813, 5861, 5939, 6247, 6841, 6899, 6961
Offset: 1

Views

Author

Derek Orr, Apr 10 2014

Keywords

Comments

These are the primes in A162862.

Examples

			5^10 + 5^9 + 5^8 + 5^7 + 5^6 + 5^5 + 5^4 + 5^3 + 5^2 + 5 + 1 = 12207031 is prime. Thus, 5 is a term of this sequence.
		

Crossrefs

Cf. A162862.

Programs

  • Mathematica
    Select[Prime[Range[200]], PrimeQ[1 + Sum[#^i, {i, 10}]] &] (* Alonso del Arte, Apr 11 2014 *)
    Select[Prime[Range[900]],PrimeQ[Total[#^Range[0,10]]]&] (* Harvey P. Dale, Oct 11 2023 *)
  • PARI
    for(n=1,10^4,if(ispseudoprime(n^10+n^9+n^8+n^7+n^6+n^5+n^4+n^3+n^2+n+1)&&ispseudoprime(n),print(n)))
    
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n) and isprime(n**10+n**9+n**8+n**7+n**6+n**5+n**4+n**3+n**2+n+1)}

A286301 Primes of the form p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime.

Original entry on oeis.org

12207031, 2141993519227, 178250690949465223, 2346320474383711003267, 398341412240537151131351, 79545183674814239059370551, 494424256962371823779424877, 8271964541879648991904246901, 32142180034067960734115528951, 91264002187709396686868598317
Offset: 1

Views

Author

Hartmut F. W. Hoft, May 05 2017

Keywords

Examples

			Prime number 12207031 = Sum_{i=0..10} 5^i is the first in the sequence since 23 divides 88573 = Sum_{i=0..10} 3^i as well as 2047 = Sum_{i=0..10} 2^i.
		

Crossrefs

Subsequence of A060885, A162861 and A193574.

Programs

  • Mathematica
    a286301[n_] := Select[Map[(Prime[#]^11-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
    a286301[150] (* data *)

A250175 Numbers n such that Phi_15(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

2, 3, 11, 17, 23, 43, 46, 52, 53, 61, 62, 78, 84, 88, 89, 92, 99, 108, 123, 124, 141, 146, 154, 156, 158, 163, 170, 171, 182, 187, 202, 217, 219, 221, 229, 233, 238, 248, 249, 253, 264, 274, 275, 278, 283, 285, 287, 291, 296, 302, 309, 314, 315, 322, 325, 342, 346, 353, 356, 366, 368, 372, 377, 380, 384, 394, 404, 406, 411, 420, 425
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[15, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(15, n)); \\ Michel Marcus, Jan 16 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015

A250176 Numbers n such that Phi_20(n) is prime, where Phi is the cyclotomic polynomial.

Original entry on oeis.org

4, 9, 11, 16, 19, 26, 34, 45, 54, 70, 86, 91, 96, 101, 105, 109, 110, 119, 120, 126, 129, 139, 141, 149, 171, 181, 190, 195, 215, 229, 260, 276, 299, 305, 309, 311, 314, 319, 334, 339, 369, 375, 414, 420, 425, 444, 470, 479, 485, 506, 519, 534, 540, 550
Offset: 1

Views

Author

Eric Chen, Dec 24 2014

Keywords

Crossrefs

Cf. A008864 (1), A006093 (2), A002384 (3), A005574 (4), A049409 (5), A055494(6), A100330 (7), A000068 (8), A153439 (9), A246392 (10), A162862(11), A246397 (12), A217070 (13), A006314 (16), A217071 (17), A164989(18), A217072 (19), A217073 (23), A153440 (27), A217074 (29), A217075(31), A006313 (32), A097475 (36), A217076 (37), A217077 (41), A217078(43), A217079 (47), A217080 (53), A217081 (59), A217082 (61), A006315(64), A217083 (67), A217084 (71), A217085 (73), A217086 (79), A153441(81), A217087 (83), A217088 (89), A217089 (97), A006316 (128), A153442(243), A056994 (256), A056995 (512), A057465 (1024), A057002 (2048), A088361 (4096), A088362 (8192), A226528 (16384), A226529 (32768), A226530(65536).

Programs

  • Mathematica
    Select[Range[600], PrimeQ[Cyclotomic[20, #]] &] (* Vincenzo Librandi, Jan 16 2015 *)
  • PARI
    isok(n) = isprime(polcyclo(20, n)); \\ Michel Marcus, Sep 29 2015

Extensions

More terms from Vincenzo Librandi, Jan 16 2015
Previous Showing 21-30 of 34 results. Next