cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A340788 Heinz numbers of integer partitions of negative rank.

Original entry on oeis.org

4, 8, 12, 16, 18, 24, 27, 32, 36, 40, 48, 54, 60, 64, 72, 80, 81, 90, 96, 100, 108, 112, 120, 128, 135, 144, 150, 160, 162, 168, 180, 192, 200, 216, 224, 225, 240, 243, 250, 252, 256, 270, 280, 288, 300, 320, 324, 336, 352, 360, 375, 378, 384, 392, 400, 405
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      4: (1,1)             80: (3,1,1,1,1)
      8: (1,1,1)           81: (2,2,2,2)
     12: (2,1,1)           90: (3,2,2,1)
     16: (1,1,1,1)         96: (2,1,1,1,1,1)
     18: (2,2,1)          100: (3,3,1,1)
     24: (2,1,1,1)        108: (2,2,2,1,1)
     27: (2,2,2)          112: (4,1,1,1,1)
     32: (1,1,1,1,1)      120: (3,2,1,1,1)
     36: (2,2,1,1)        128: (1,1,1,1,1,1,1)
     40: (3,1,1,1)        135: (3,2,2,2)
     48: (2,1,1,1,1)      144: (2,2,1,1,1,1)
     54: (2,2,2,1)        150: (3,3,2,1)
     60: (3,2,1,1)        160: (3,1,1,1,1,1)
     64: (1,1,1,1,1,1)    162: (2,2,2,2,1)
     72: (2,2,1,1,1)      168: (4,2,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A064173.
The odd case is A101707 is (A340929).
The even case is A101708 is (A340930).
The positive version is (A340787).
A001222 counts prime factors.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A063995/A105806 count partitions by Dyson rank.
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324518 counts partitions with rank equal to greatest part (A324517).
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602), with strict case A117192.
A340692 counts partitions of odd rank (A340603), with strict case A117193.

Programs

  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]
    				

Formula

For all terms A061395(a(n)) < A001222(a(n)).

A340852 Numbers that can be factored in such a way that every factor is a divisor of the number of factors.

Original entry on oeis.org

1, 4, 16, 27, 32, 64, 96, 128, 144, 192, 216, 256, 288, 324, 432, 486, 512, 576, 648, 729, 864, 972, 1024, 1296, 1458, 1728, 1944, 2048, 2560, 2592, 2916, 3125, 3888, 4096, 5120, 5184, 5832, 6144, 6400, 7776, 8192, 9216, 11664, 12288, 12800, 13824, 15552
Offset: 1

Views

Author

Gus Wiseman, Feb 04 2021

Keywords

Comments

Also numbers that can be factored in such a way that the length is divisible by the least common multiple.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    4: {1,1}
   16: {1,1,1,1}
   27: {2,2,2}
   32: {1,1,1,1,1}
   64: {1,1,1,1,1,1}
   96: {1,1,1,1,1,2}
  128: {1,1,1,1,1,1,1}
  144: {1,1,1,1,2,2}
  192: {1,1,1,1,1,1,2}
  216: {1,1,1,2,2,2}
  256: {1,1,1,1,1,1,1,1}
  288: {1,1,1,1,1,2,2}
  324: {1,1,2,2,2,2}
  432: {1,1,1,1,2,2,2}
For example, 24576 has three suitable factorizations:
  (2*2*2*2*2*2*2*2*2*2*2*12)
  (2*2*2*2*2*2*2*2*2*2*4*6)
  (2*2*2*2*2*2*2*2*2*3*4*4)
so is in the sequence.
		

Crossrefs

Partitions of this type are counted by A340693 (A340606).
These factorizations are counted by A340851.
The reciprocal version is A340853.
A143773 counts partitions whose parts are multiples of the number of parts.
A320911 can be factored into squarefree semiprimes.
A340597 have an alt-balanced factorization.
A340656 lack a twice-balanced factorization, complement A340657.
- Factorizations -
A001055 counts factorizations, with strict case A045778.
A316439 counts factorizations by product and length.
A339846 counts factorizations of even length.
A339890 counts factorizations of odd length.
A340101 counts factorizations into odd factors, odd-length case A340102.
A340653 counts balanced factorizations.
A340831/A340832 count factorizations with odd maximum/minimum.
A340785 counts factorizations into even numbers, even-length case A340786.
A340854 cannot be factored with odd least factor, complement A340855.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[1000],Select[facs[#],And@@IntegerQ/@(Length[#]/#)&]!={}&]

A360557 Numbers > 1 whose sorted first differences of 0-prepended prime indices have non-integer median.

Original entry on oeis.org

4, 10, 15, 22, 24, 25, 33, 34, 36, 40, 46, 51, 54, 55, 56, 62, 69, 77, 82, 85, 88, 93, 94, 100, 104, 115, 118, 119, 121, 123, 134, 135, 136, 141, 146, 152, 155, 161, 166, 177, 184, 187, 194, 196, 201, 205, 206, 217, 218, 219, 220, 221, 225, 232, 235, 240, 248
Offset: 1

Views

Author

Gus Wiseman, Feb 17 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is in the sequence.
		

Crossrefs

For mean instead of median complement we have A340610, counted by A168659.
For mean instead of median we have A360668, counted by A200727.
Positions of odd terms in A360555.
The complement is A360556 (without 1), counted by A360688.
These partitions are counted by A360691.
- For divisors (A063655) we have A139710, complement A139711.
- For prime indices (A360005) we have A359912, complement A359908.
- For distinct prime indices (A360457) we have A360551, complement A360550.
- For distinct prime factors (A360458) we have A100367, complement A360552.
- For prime factors (A360459) we have A072978, complement A359913.
- For prime multiplicities (A360460) we have A360554, complement A360553.
- For 0-prepended differences (A360555) we have A360557, complement A360556.
A112798 lists prime indices, length A001222, sum A056239.
A287352 lists 0-prepended first differences of prime indices.
A325347 counts partitions with integer median, complement A307683.
A355536 lists first differences of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],!IntegerQ[Median[Differences[Prepend[prix[#],0]]]]&]

A340603 Heinz numbers of integer partitions of odd rank.

Original entry on oeis.org

3, 4, 7, 10, 12, 13, 15, 16, 18, 19, 22, 25, 27, 28, 29, 33, 34, 37, 40, 42, 43, 46, 48, 51, 52, 53, 55, 60, 61, 62, 63, 64, 69, 70, 71, 72, 76, 77, 78, 79, 82, 85, 88, 89, 90, 93, 94, 98, 100, 101, 105, 107, 108, 112, 113, 114, 115, 116, 117, 118, 119, 121
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its number of parts. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
      3: (2)           33: (5,2)           63: (4,2,2)
      4: (1,1)         34: (7,1)           64: (1,1,1,1,1,1)
      7: (4)           37: (12)            69: (9,2)
     10: (3,1)         40: (3,1,1,1)       70: (4,3,1)
     12: (2,1,1)       42: (4,2,1)         71: (20)
     13: (6)           43: (14)            72: (2,2,1,1,1)
     15: (3,2)         46: (9,1)           76: (8,1,1)
     16: (1,1,1,1)     48: (2,1,1,1,1)     77: (5,4)
     18: (2,2,1)       51: (7,2)           78: (6,2,1)
     19: (8)           52: (6,1,1)         79: (22)
     22: (5,1)         53: (16)            82: (13,1)
     25: (3,3)         55: (5,3)           85: (7,3)
     27: (2,2,2)       60: (3,2,1,1)       88: (5,1,1,1)
     28: (4,1,1)       61: (18)            89: (24)
     29: (10)          62: (11,1)          90: (3,2,2,1)
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
These partitions are counted by A340692.
The complement is A340602, counted by A340601.
The case of positive rank is A340604.
- Rank -
A001222 gives number of prime indices.
A047993 counts partitions of rank 0 (A106529).
A061395 gives maximum prime index.
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts (A066208).
A027193 counts partitions of odd length (A026424).
A027193 (also) counts partitions of odd maximum (A244991).
A058695 counts partitions of odd numbers (A300063).
A067659 counts strict partitions of odd length (A030059).
A160786 counts odd-length partitions of odd numbers (A300272).
A339890 counts factorizations of odd length.
A340102 counts odd-length factorizations into odd factors.
A340385 counts partitions of odd length and maximum (A340386).

Programs

  • Mathematica
    Select[Range[100],OddQ[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]&]

Formula

A061395(a(n)) - A001222(a(n)) is odd.

A340787 Heinz numbers of integer partitions of positive rank.

Original entry on oeis.org

3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), giving a bijective correspondence between positive integers and integer partitions.
The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The sequence of partitions together with their Heinz numbers begins:
     3: (2)      28: (4,1,1)    49: (4,4)      69: (9,2)
     5: (3)      29: (10)       51: (7,2)      70: (4,3,1)
     7: (4)      31: (11)       52: (6,1,1)    71: (20)
    10: (3,1)    33: (5,2)      53: (16)       73: (21)
    11: (5)      34: (7,1)      55: (5,3)      74: (12,1)
    13: (6)      35: (4,3)      57: (8,2)      76: (8,1,1)
    14: (4,1)    37: (12)       58: (10,1)     77: (5,4)
    15: (3,2)    38: (8,1)      59: (17)       78: (6,2,1)
    17: (7)      39: (6,2)      61: (18)       79: (22)
    19: (8)      41: (13)       62: (11,1)     82: (13,1)
    21: (4,2)    42: (4,2,1)    63: (4,2,2)    83: (23)
    22: (5,1)    43: (14)       65: (6,3)      85: (7,3)
    23: (9)      44: (5,1,1)    66: (5,2,1)    86: (14,1)
    25: (3,3)    46: (9,1)      67: (19)       87: (10,2)
    26: (6,1)    47: (15)       68: (7,1,1)    88: (5,1,1,1)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
These partitions are counted by A064173.
The odd case is A101707 (A340604).
The even case is A101708 (A340605).
The negative version is (A340788).
A001222 counts prime factors.
A061395 selects the maximum prime index.
A072233 counts partitions by sum and length.
A168659 = partitions whose greatest part divides their length (A340609).
A168659 = partitions whose length divides their greatest part (A340610).
A200750 = partitions whose length and maximum are relatively prime.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A063995/A105806 count partitions by Dyson rank.
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
A340601 counts partitions of even rank (A340602), with strict case A117192.
A340692 counts partitions of odd rank (A340603), with strict case A117193.

Programs

  • Mathematica
    Select[Range[2,100],PrimePi[FactorInteger[#][[-1,1]]]>PrimeOmega[#]&]

Formula

For all terms A061395(a(n)) > A001222(a(n)).

A340828 Number of strict integer partitions of n whose maximum part is a multiple of their length.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 3, 2, 4, 5, 6, 6, 7, 8, 11, 10, 13, 17, 18, 21, 24, 27, 30, 35, 39, 46, 53, 61, 68, 79, 87, 97, 110, 123, 139, 157, 175, 196, 222, 247, 278, 312, 347, 385, 433, 476, 531, 586, 651, 720, 800, 883, 979, 1085, 1200, 1325, 1464, 1614, 1777
Offset: 1

Views

Author

Gus Wiseman, Feb 01 2021

Keywords

Examples

			The a(1) = 1 through a(16) = 10 partitions (A..G = 10..16):
  1  2  3   4  5   6    7   8   9    A     B    C    D    E     F      G
        21     41  42   43  62  63   64    65   84   85   86    87     A6
                   321  61      81   82    83   A2   A3   A4    A5     C4
                                621  631   A1   642  C1   C2    C3     E2
                                     4321  632  651  643  653   E1     943
                                           641  921  652  932   654    952
                                                     931  941   942    961
                                                          8321  951    C31
                                                                C21    8431
                                                                8421   8521
                                                                54321
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict version is A168659 (A340609/A340610).
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A064173 counts partitions of positive/negative rank (A340787/A340788).
A067538 counts partitions whose length/max divides sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A096401 counts strict partition with length equal to minimum.
A102627 counts strict partitions with length dividing sum.
A326842 counts partitions whose length and parts all divide sum (A326847).
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340829 counts strict partitions with Heinz number divisible by sum.
A340830 counts strict partitions with all parts divisible by length.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Divisible[Max@@#,Length[#]]&]],{n,30}]

A340606 Numbers whose prime indices (A112798) are all divisors of the number of prime factors (A001222).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 16, 20, 24, 32, 36, 50, 54, 56, 64, 81, 84, 96, 125, 126, 128, 144, 160, 176, 189, 196, 216, 240, 256, 294, 324, 360, 384, 400, 416, 441, 486, 512, 540, 576, 600, 624, 686, 729, 810, 864, 896, 900, 936, 968, 1000, 1024, 1029, 1040, 1088, 1215
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   4: {1,1}
   6: {1,2}
   8: {1,1,1}
   9: {2,2}
  16: {1,1,1,1}
  20: {1,1,3}
  24: {1,1,1,2}
  32: {1,1,1,1,1}
  36: {1,1,2,2}
  50: {1,3,3}
  54: {1,2,2,2}
  56: {1,1,1,4}
  64: {1,1,1,1,1,1}
  81: {2,2,2,2}
  84: {1,1,2,4}
  96: {1,1,1,1,1,2}
		

Crossrefs

Note: Heinz numbers are given in parentheses below.
The reciprocal version is A143773 (A316428).
These partitions are counted by A340693.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A003963 multiplies together the prime indices of n.
A018818 counts partitions of n into divisors of n (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions of n whose length divides n (A316413).
A056239 adds up the prime indices of n.
A061395 selects the maximum prime index.
A067538 counts partitions of n whose maximum divides n (A326836).
A072233 counts partitions by sum and length.
A112798 lists the prime indices of each positive integer.
A168659 = partitions whose length is divisible by their maximum (A340609).
A168659 = partitions whose maximum is divisible by their length (A340610).
A289509 lists numbers with relatively prime prime indices.
A326842 = partitions of n whose length and parts all divide n (A326847).
A326843 = partitions of n whose length and maximum both divide n (A326837).
A340852 have a factorization with factors dividing length.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@IntegerQ/@(PrimeOmega[#]/primeMS[#])&]

A340830 Number of strict integer partitions of n such that every part is a multiple of the number of parts.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 4, 1, 4, 1, 6, 1, 5, 2, 6, 1, 8, 1, 7, 4, 7, 1, 12, 1, 8, 6, 9, 1, 16, 1, 10, 9, 11, 1, 21, 1, 12, 13, 12, 1, 28, 1, 13, 17, 16, 1, 33, 1, 19, 22, 15, 1, 45, 1, 16, 28, 25, 1, 47, 1, 28, 34, 18
Offset: 1

Views

Author

Gus Wiseman, Feb 02 2021

Keywords

Examples

			The a(n) partitions for n = 1, 6, 10, 14, 18, 20, 24, 26, 30:
  1   6     10    14     18      20     24       26      30
      4,2   6,4   8,6    10,8    12,8   16,8     18,8    22,8
            8,2   10,4   12,6    14,6   18,6     20,6    24,6
                  12,2   14,4    16,4   20,4     22,4    26,4
                         16,2    18,2   22,2     24,2    28,2
                         9,6,3          14,10    14,12   16,14
                                        12,9,3   16,10   18,12
                                        15,6,3           20,10
                                                         15,9,6
                                                         18,9,3
                                                         21,6,3
                                                         15,12,3
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The non-strict case is A143773 (A316428).
The case where length divides sum also is A340827.
The version for factorizations is A340851.
Factorization of this type are counted by A340853.
A018818 counts partitions into divisors (A326841).
A047993 counts balanced partitions (A106529).
A067538 counts partitions whose length/max divide sum (A316413/A326836).
A072233 counts partitions by sum and length, with strict case A008289.
A102627 counts strict partitions whose length divides sum.
A326850 counts strict partitions whose maximum part divides sum.
A326851 counts strict partitions with length and maximum dividing sum.
A340828 counts strict partitions with length divisible by maximum.
A340829 counts strict partitions with Heinz number divisible by sum.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&And@@IntegerQ/@(#/Length[#])&]],{n,30}]

Formula

a(n) = Sum_{d|n} A008289(n/d, d).

A350879 Triangle T(n,k), n >= 1, 1 <= k <= n, read by rows, where T(n,k) is the number of partitions of n such that k*(greatest part) = (number of parts).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 3, 1, 1, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 1, 4, 1, 1, 1, 0, 0, 0, 0, 1, 4, 2, 1, 1, 0, 0, 0, 0, 0, 1, 6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1, 7, 4, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 5, 2, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 11, 7, 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Seiichi Manyama, Jan 21 2022

Keywords

Comments

T(n,k) is the number of partitions of n such that (greatest part) = k*(number of parts).
Column k > 1 is asymptotic to k! * Pi^k * exp(sqrt(2*Pi*n/3)) / (2^((k+4)/2) * 3^((k+1)/2) * n^((k+2)/2)). Equivalently, for fixed k > 1, T(n,k) ~ k! * Pi^k * A000041(n) / (6^(k/2) * n^(k/2)). - Vaclav Kotesovec, Oct 17 2024

Examples

			Triangle begins:
  1;
  0, 1;
  1, 0, 1;
  1, 0, 0, 1;
  1, 1, 0, 0, 1;
  1, 1, 0, 0, 0, 1;
  3, 1, 1, 0, 0, 0, 1;
  2, 2, 1, 0, 0, 0, 0, 1;
  4, 1, 1, 1, 0, 0, 0, 0, 1;
  4, 2, 1, 1, 0, 0, 0, 0, 0, 1;
  6, 3, 2, 1, 1, 0, 0, 0, 0, 0, 1;
		

Crossrefs

Row sums give A168659.

Programs

  • PARI
    T(n, k) = polcoef(sum(i=1, (n+1)\(k+1), x^((k+1)*i-1)*prod(j=1, i-1, (1-x^(k*i+j-1))/(1-x^j+x*O(x^n)))), n);
    
  • Ruby
    def partition(n, min, max)
      return [[]] if n == 0
      [max, n].min.downto(min).flat_map{|i| partition(n - i, min, i).map{|rest| [i, *rest]}}
    end
    def A(n)
      a = Array.new(n, 0)
      partition(n, 1, n).each{|ary|
        (1..n).each{|i|
          a[i - 1] += 1 if i * ary[0] == ary.size
        }
      }
      a
    end
    def A350879(n)
      (1..n).map{|i| A(i)}.flatten
    end
    p A350879(14)

Formula

G.f. of column k: Sum_{i>=1} x^((k+1)*i-1) * Product_{j=1..i-1} (1-x^(k*i+j-1))/(1-x^j).

A168656 Number of partitions of n such that the smallest part is divisible by the number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 10, 11, 13, 15, 18, 20, 23, 25, 29, 33, 36, 41, 47, 53, 58, 66, 74, 83, 92, 103, 116, 130, 144, 160, 179, 199, 219, 243, 269, 298, 328, 362, 399, 441, 484, 533, 586, 645, 708, 778, 854, 937, 1026, 1124, 1230, 1347, 1470, 1607, 1756, 1917, 2089
Offset: 1

Views

Author

Vladeta Jovovic, Dec 01 2009, Dec 04 2009

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 100; Rest[CoefficientList[Series[Sum[x^(k^2)/((1 - x^(k^2))*Product[1 - x^j, {j, 1, k-1}]), {k, 1, Sqrt[nmax]}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Oct 16 2024 *)
    Table[Count[IntegerPartitions[n],?(Mod[#[[-1]],Length[#]]==0&)],{n,70}] (* _Harvey P. Dale, Dec 22 2024 *)
  • PARI
    N=100; x='x+O('x^N);
    Vec( sum(k=1,sqrtint(N), x^(k^2)/(1-x^(k^2)) / prod(i=1,k-1, 1-x^i) ) )

Formula

G.f.: Sum_{k>=1} x^(k^2)/((1-x^(k^2)) * Product_{i=1..k-1} (1-x^i)).
a(n) ~ c * exp(2*Pi*sqrt(n/15)) / n^(3/4), where c = 1 / (2 * 3^(1/4) * sqrt(5) * phi^(3/2)) = 0.08255116908... and phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 17 2024
Previous Showing 11-20 of 33 results. Next