A086718
Convolution of sequence of primes with sequence sigma(n).
Original entry on oeis.org
2, 9, 22, 48, 85, 151, 231, 355, 500, 709, 937, 1267, 1617, 2069, 2575, 3193, 3860, 4686, 5549, 6593, 7725, 8985, 10337, 11961, 13591, 15464, 17498, 19714, 22036, 24690, 27378, 30382, 33603, 37023, 40597, 44733, 48720, 53152, 57950, 62978, 68074, 73898, 79558
Offset: 1
-
N:= 100: # to get a(1)..a(N)
P:= [seq(ithprime(i),i=1..N+1)]:
S:= [seq(numtheory:-sigma(i),i=1..N+1)]:
seq(add(P[i]*S[n-i],i=1..n-1),n=2..N+1); # Robert Israel, Sep 09 2020
-
p=primes(30); s=vector(30,i, sigma(i)); conv(u,v)=local(w); w=vector(length(u),i,sum(j=1,i,u[j]*v[i+1-j])); w;
conv(p,s)
A319073
Square array read by antidiagonals upwards: T(n,k) = k*sigma(n), n >= 1, k >= 1.
Original entry on oeis.org
1, 3, 2, 4, 6, 3, 7, 8, 9, 4, 6, 14, 12, 12, 5, 12, 12, 21, 16, 15, 6, 8, 24, 18, 28, 20, 18, 7, 15, 16, 36, 24, 35, 24, 21, 8, 13, 30, 24, 48, 30, 42, 28, 24, 9, 18, 26, 45, 32, 60, 36, 49, 32, 27, 10, 12, 36, 39, 60, 40, 72, 42, 56, 36, 30, 11, 28, 24, 54, 52, 75, 48, 84, 48, 63, 40, 33, 12
Offset: 1
The corner of the square array begins:
A000203 A074400 A272027 A239050 A274535 A274536 A319527 A319528
A000027: 1, 2, 3, 4, 5, 6, 7, 8, ...
A008585: 3, 6, 9, 12, 15, 18, 21, 24, ...
A008586: 4, 8, 12, 16, 20, 24, 28, 32, ...
A008589: 7, 14, 21, 28, 35, 42, 49, 56, ...
A008588: 6, 12, 18, 24, 30, 36, 42, 48, ...
A008594: 12, 24, 36, 48, 60, 72, 84, 96, ...
A008590: 8, 16, 24, 32, 40, 48, 56, 64, ...
A008597: 15, 30, 45, 60, 75, 90, 105, 120, ...
A008595: 13, 26, 39, 52, 65, 78, 91, 104, ...
A008600: 18, 36, 54, 72, 90, 108, 126, 144, ...
...
Row n lists the multiples of
A000203(n).
Initial zeros should be omitted in the following sequences related to the rows of the array:
(Note that in the OEIS there are many other sequences that are also rows of this square array.)
-
T:=Flat(List([1..12],n->List([1..n],k->k*Sigma(n-k+1))));; Print(T); # Muniru A Asiru, Jan 01 2019
-
with(numtheory): T:=(n,k)->k*sigma(n-k+1): seq(seq(T(n,k),k=1..n),n=1..12); # Muniru A Asiru, Jan 01 2019
-
Table[k DivisorSigma[1, #] &[m - k + 1], {m, 12}, {k, m}] // Flatten (* Michael De Vlieger, Dec 31 2018 *)
A256532
Product of n and the sum of remainders of n mod k, for k = 1, 2, 3, ..., n.
Original entry on oeis.org
0, 0, 3, 4, 20, 18, 56, 64, 108, 130, 242, 204, 364, 434, 540, 576, 867, 846, 1216, 1220, 1470, 1694, 2254, 2040, 2575, 2912, 3375, 3472, 4379, 4140, 5177, 5344, 6072, 6698, 7630, 7128, 8621, 9424, 10491, 10320, 12177, 11928, 13975, 14432, 15255, 16468, 18941, 17952, 20286, 21000, 22899, 23608, 26765, 26568, 29095
Offset: 1
a(5) = 20 because 5 * (0 + 1 + 2 + 1) = 5 * 4 = 20.
a(6) = 18 because 6 * (0 + 0 + 0 + 2 + 1) = 6 * 3 = 18.
a(7) = 56 because 7 * (0 + 1 + 1 + 3 + 2 + 1) = 7 * 8 = 56.
Cf.
A000203,
A000578,
A004125,
A024916,
A143128,
A175254,
A236104,
A236112,
A237270,
A237271,
A237593,
A244580,
A245092,
A256533.
-
Table[n*Sum[Mod[n,i],{i,2,n-1}],{n,55}] (* Ivan N. Ianakiev, May 04 2015 *)
-
vector(50, n, n*sum(k=1, n, n % k)) \\ Michel Marcus, May 05 2015
-
def A256532(n):
s=0
for k in range(1,n+1):
s+=n%k
return s*n # Indranil Ghosh, Feb 13 2017
-
from math import isqrt
def A256532(n): return n**3+n*((s:=isqrt(n))**2*(s+1)-sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1))>>1) # Chai Wah Wu, Oct 22 2023
A328366
a(n) is the surface area of the stepped pyramid with n levels described in A245092.
Original entry on oeis.org
6, 20, 40, 70, 102, 150, 194, 256, 318, 394, 462, 566, 646, 750, 858, 984, 1088, 1238, 1354, 1518, 1666, 1826, 1966, 2182, 2344, 2532, 2720, 2944, 3120, 3384, 3572, 3826, 4054, 4298, 4534, 4860, 5084, 5356, 5624, 5964, 6212, 6572, 6832, 7176, 7512, 7840, 8124, 8564, 8874, 9260, 9608, 10012
Offset: 1
For n = 1 the first level of the stepped pyramid is a cube, so a(1) = 6.
Cf.
A000217,
A002378,
A013661,
A024916,
A045943,
A046092,
A153485,
A175254 (volume),
A196020,
A235791,
A236104,
A237270,
A237271,
A237591,
A237593,
A245092,
A262626,
A299692,
A327329.
-
s=0;Do[s=s+4*DivisorSigma[1,n];t=2n(n+1);Print[(s/2)+t],{n,1,8000}] (* Metin Sariyar, Nov 20 2019 *)
-
from math import isqrt
def A328366(n): return (n*(n+1)<<1)-(s:=isqrt(n))**2*(s+1)+sum((q:=n//k)*((k<<1)+q+1) for k in range(1,s+1)) # Chai Wah Wu, Oct 22 2023
Original entry on oeis.org
0, 3, 11, 32, 56, 116, 164, 269, 373, 535, 655, 963, 1131, 1443, 1779, 2244, 2532, 3195, 3555, 4353, 4993, 5749, 6277, 7657, 8401, 9451, 10491, 12003, 12843, 14931, 15891, 17844, 19380, 21162, 22794, 25979, 27347, 29567, 31695, 35205, 36885, 40821, 42669, 46281, 49713, 52953, 55161, 60989, 63725, 68282
Offset: 1
For n = 4 the volume of the first four levels of the symmetric staircase described in A244580 is 47, since the structure contains 47 cubes. The volume of the base level is 15, since the base of the structure contains 15 cubes, so a(4) = 47 - 15 = 32.
-
a(n) = sum(k=1, n, (k-1)*sigma(k)); \\ Michel Marcus, Apr 19 2020
-
from math import isqrt
def A332264(n): return (((s:=isqrt(n))**2*(s+1)*(6-(s+1)*((s<<1)+1))>>1)+sum((q:=n//k)*(k*(q+1)*(3*k+(q<<1)+1)-3*((k<<1)+q+1)) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 25 2023
A353690
Irregular triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the numbers of A353689 multiplied by A000330(k), and the first element of column k is in row A000217(k).
Original entry on oeis.org
1, 5, 18, 5, 53, 25, 139, 90, 333, 265, 14, 748, 695, 70, 1592, 1665, 252, 3246, 3740, 742, 6379, 7960, 1946, 30, 12152, 16230, 4662, 150, 22524, 31895, 10472, 540, 40764, 60760, 22288, 1590, 72213, 112620, 45444, 4170, 125505, 203820, 89306, 9990, 55, 214378, 361065, 170128, 22440, 275
Offset: 1
Triangle begins:
1;
5;
18, 5;
53, 25;
139, 90;
333, 265, 14;
748, 695, 70;
1592, 1665, 252;
3246, 3740, 742;
6379, 7960, 1946, 30;
12152, 16230, 4662, 150;
22524, 31895, 10472, 540;
40764, 60760, 22288, 1590;
72213, 112620, 45444, 4170;
125505, 203820, 89306, 9990, 55;
214378, 361065, 170128, 22440, 275;
360473, 627525, 315336, 47760, 990;
597450, 1071890, 570696, 97380, 2915;
977196, 1802365, 1010982, 191370, 7645;
1578852, 2987250, 1757070, 364560, 18315;
2522157, 4885980, 3001292, 675720, 41140, 91;
...
For n = 6 we have that A175254(6) is equal to [1] + [1 + 3] + [1 + 3 + 4] + [1 + 3 + 4 + 7] + [1 + 3 + 4 + 7 + 6] + [1 + 3 + 4 + 7 + 6 + 12] = 1 + 4 + 8 + 15 + 21 + 33 = 82. On the other hand the alternating sum of the 6th row of the triangle is 333 - 265 + 14 = 82, equaling A175254(6).
The first element in column k is
A000330(k).
A345116
Irregular triangle T(n,k) read by rows in which row n has length the n-th triangular number A000217(n) and every column k lists the positive integers A000027, n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 1, 1, 3, 2, 2, 1, 1, 1, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 8, 7, 7, 6, 6, 6, 5, 5, 5, 5
Offset: 1
Triangle begins:
1;
2, 1, 1;
3, 2, 2, 1, 1, 1;
4, 3, 3, 2, 2, 2, 1, 1, 1, 1;
5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1;
6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1;
...
For n = 6 the divisors of the terms of the 6th row of triangle are:
6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1;
3, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1;
2, 1, 1, 1;
1;
The sum of these divisors is equal to A175254(6) = 82, equaling the volume of the stepped pyramid with six levels described in A245092.
A123329
Let M be the matrix defined in A111490. Sequence gives M(2,1)-M(1,2), M(2,1)+M(3,1)+M(3,2)-M(1,2)-M(1,3)-M(2,3), etc.
Original entry on oeis.org
0, 1, 3, 8, 14, 26, 39, 59, 83, 115, 148, 197, 247, 307, 376, 460, 545, 651, 758, 887, 1027, 1181, 1336, 1527, 1724, 1937, 2163, 2417, 2672, 2969, 3267, 3596, 3940, 4304, 4681, 5113, 5546, 6001, 6473, 6995, 7518, 8095, 8673, 9291, 9942, 10619, 11297, 12051
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, [0$2], (p-> p
+[numtheory[sigma](n)-n$2]+[0, p[1]])(b(n-1)))
end:
a:= n-> b(n+1)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Jan 21 2021
-
b[n_] := b[n] = If[n == 0, {0, 0}, With[{p = b[n-1]}, p +
DivisorSigma[1, n] - n + {0, p[[1]]}]];
a[n_] := b[n+1][[2]];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jul 10 2021, after Alois P. Heinz *)
-
def M(n,k): return 1 + (k-1)%n
def a(n):
return sum(M(i,j)-M(j,i) for i in range(2, n+3) for j in range(1, i))
print([a(n) for n in range(48)]) # Michael S. Branicky, Jan 20 2021
A345272
Irregular triangle read by rows T(n,k) in which row n lists in nonincreasing order all divisors of the terms of the n-th row of triangle A110730, n >= 1, k >= 1.
Original entry on oeis.org
1, 2, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1, 4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 5, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Triangle begins:
1;
2, 1, 1, 1;
3, 2, 2, 1, 1, 1, 1, 1, 1;
4, 3, 3, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
5, 4, 4, 3, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
...
For n = 3 the third row of A110730 is [1, 1, 1, 2, 2, 3], so the divisors of these terms in nonincreasing order are [3, 2, 2, 1, 1, 1, 1, 1, 1], the same as the third row of triangle.
-
row(n) = my(v=[]); for (k=1, n, for (j=1, n-k+1, v = concat(v, divisors(k)))); vecsort(v,,4); \\ Michel Marcus, Jun 14 2021
A350637
Triangle read by rows: T(n,k) in which row n lists the first n terms of A024916 in reverse order, 1 <= k <= n.
Original entry on oeis.org
1, 4, 1, 8, 4, 1, 15, 8, 4, 1, 21, 15, 8, 4, 1, 33, 21, 15, 8, 4, 1, 41, 33, 21, 15, 8, 4, 1, 56, 41, 33, 21, 15, 8, 4, 1, 69, 56, 41, 33, 21, 15, 8, 4, 1, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1, 99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1, 127, 99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1
Offset: 1
Triangle begins:
1;
4, 1;
8, 4, 1;
15, 8, 4, 1;
21, 15, 8, 4, 1;
33, 21, 15, 8, 4, 1;
41, 33, 21, 15, 8, 4, 1;
56, 41, 33, 21, 15, 8, 4, 1;
69, 56, 41, 33, 21, 15, 8, 4, 1;
87, 69, 56, 41, 33, 21, 15, 8, 4, 1;
99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1;
127, 99, 87, 69, 56, 41, 33, 21, 15, 8, 4, 1;
...
For n = 9 the lateral view and top view of the stepped pyramid described in A245092 look as shown below:
_
9 1 |_|_
8 4 |_ _|_
7 8 |_ _|_|_
6 15 |_ _ _| |_
5 21 |_ _ _|_ _|_
4 33 |_ _ _ _| | |_
3 41 |_ _ _ _|_|_ _|_
2 56 |_ _ _ _ _|_|_ |_
1 69 |_ _ _ _ _|_ _|_ _|
.
Level Row 9 Lateral view of
k T(9,k) the stepped pyramid
.
_ _ _ _ _ _ _ _ _
|_| | | | | | | | |
|_ _|_| | | | | | |
|_ _| _|_| | | | |
|_ _ _| _|_| | |
|_ _ _| _| _ _|_|
|_ _ _ _| _| |
|_ _ _ _| |_ _|
|_ _ _ _ _|
|_ _ _ _ _|
.
Top view of
the stepped pyramid
.
For n = 9 and k = 1 there are 69 cubic cells in the level 1 starting from the base of the stepped pyramid, so T(9,1) = 69.
For n = 9 and k = 9 there is only one cubic cell in the level k = 9 (the top) of the stepped pyramid, so T(9,9) = 1.
The volume of the stepped pyramid (also the total number of cubic cells) represents the 9th term of the convolution of A000203 and A000027 hence it's equal to A175254(9) = 248, equaling the sum of the 9th row of triangle.
Column k gives
A024916 starting in row k.
Cf.
A000027,
A000203,
A004736,
A196020,
A235791,
A236104,
A237591,
A237593,
A245092,
A262626,
A272172.
-
Join@@Array[Reverse@Array[Sum[#-Mod[#,m],{m,#}]&,#]&,12] (* Giorgos Kalogeropoulos, Jan 12 2022 *)
-
row(n) = Vecrev(vector(n, k, sum(i=1, k, k\i*i))); \\ Michel Marcus, Jan 22 2022
Comments