cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A269559 Decimal expansion of Psi(log(2)), negated.

Original entry on oeis.org

1, 2, 3, 9, 5, 9, 7, 2, 7, 9, 6, 1, 7, 6, 1, 8, 5, 0, 8, 2, 4, 4, 1, 2, 7, 5, 5, 1, 6, 8, 6, 0, 8, 4, 2, 4, 5, 4, 3, 3, 2, 8, 9, 5, 2, 2, 6, 8, 7, 4, 2, 0, 8, 6, 6, 4, 6, 1, 6, 4, 8, 9, 8, 8, 8, 1, 9, 4, 0, 6, 3, 8, 9, 3, 3, 4, 5, 3, 5, 9, 0, 1, 5, 8, 7, 3, 2, 6, 0, 6, 9, 4, 5, 7, 3, 4, 8, 8, 2, 3, 8, 2, 0
Offset: 1

Views

Author

Keywords

Comments

Psi(x) is the digamma function (logarithmic derivative of the Gamma function).

Examples

			-1.2395972796176185082441275516860842454332895226874208...
		

Crossrefs

Programs

  • MATLAB
    format long; psi(log(2))
  • Maple
    evalf(Psi(ln(2)), 120);
  • Mathematica
    RealDigits[PolyGamma[Log[2]], 10, 120][[1]]
  • PARI
    default(realprecision, 120); psi(log(2))
    

A246745 Decimal expansion of Gamma(2/5).

Original entry on oeis.org

2, 2, 1, 8, 1, 5, 9, 5, 4, 3, 7, 5, 7, 6, 8, 8, 2, 2, 3, 0, 5, 9, 0, 5, 4, 0, 2, 1, 9, 0, 7, 6, 7, 9, 4, 5, 0, 7, 7, 0, 5, 6, 6, 5, 0, 1, 7, 7, 1, 4, 6, 9, 5, 8, 2, 2, 4, 1, 9, 7, 7, 7, 5, 2, 6, 4, 6, 1, 8, 5, 1, 6, 8, 1, 2, 3, 0, 0, 4, 7, 3, 6, 5, 1, 0, 9, 9, 1, 6, 8, 3, 3, 5, 6, 1, 7, 9, 1, 7, 6, 9, 8, 2
Offset: 1

Views

Author

Jean-François Alcover, Sep 02 2014

Keywords

Examples

			2.21815954375768822305905402190767945077056650177146958224...
		

Crossrefs

Cf. A175379, A175380 (both constants are mentioned in Finch's Addenda), A340721.

Programs

  • Mathematica
    RealDigits[Gamma[2/5], 10, 103] // First
  • PARI
    gamma(2/5) \\ Michel Marcus, Sep 02 2014

A203126 Decimal expansion of (1/6)! = Gamma(7/6).

Original entry on oeis.org

9, 2, 7, 7, 1, 9, 3, 3, 3, 6, 3, 0, 0, 3, 9, 2, 0, 0, 7, 0, 8, 3, 4, 9, 4, 8, 2, 5, 3, 4, 6, 2, 1, 0, 1, 8, 5, 6, 6, 4, 6, 6, 5, 1, 9, 1, 4, 5, 4, 7, 5, 5, 7, 6, 9, 3, 6, 1, 2, 4, 1, 0, 4, 3, 8, 7, 1, 5, 1, 2, 5, 0, 4, 6, 9, 6, 3, 3, 7, 1, 7, 5, 8, 3, 8, 9, 8, 2, 7, 5, 6, 0, 3, 5, 0, 3, 6, 2, 5
Offset: 0

Views

Author

N. J. A. Sloane, Dec 29 2011

Keywords

Examples

			.92771933363003920070834948253462101856646651914547557693612...
		

Crossrefs

Programs

Formula

Equals A175379/6. - R. J. Mathar, Jan 15 2021
A073006 * this * A231863 * A329219 = A202623. - R. J. Mathar, Jan 15 2021
Equals Integral_{x=0..oo} exp(-x^6) dx. - Ilya Gutkovskiy, Sep 18 2021

A034789 Related to sextic factorial numbers A008542.

Original entry on oeis.org

1, 21, 546, 15561, 466830, 14471730, 458960580, 14801478705, 483514971030, 15955994043990, 530899438190940, 17785131179396490, 599222112044281740, 20287948650642110340, 689790254121831751560, 23539092421907508521985, 805867752326480585870310, 27668126163209166781547310
Offset: 1

Views

Author

Keywords

Comments

Convolution of A004993(n-1) with A025751(n), n >= 1.

Crossrefs

Programs

  • GAP
    List([1..20], n-> 6^(n-1)*Product([1..n], j-> 6*j-5)/Factorial(n) ); # G. C. Greubel, Nov 11 2019
  • Magma
    [6^(n-1)*(&*[6*j-5: j in [1..n]])/Factorial(n): n in [1..20]]; // G. C. Greubel, Nov 11 2019
    
  • Maple
    seq( 6^(n-1)*mul(6*j-5, j=1..n)/n!, n=1..20); # G. C. Greubel, Nov 11 2019
  • Mathematica
    Rest@ CoefficientList[Series[(-1 + (1 - 36 x)^(-1/6))/6, {x, 0, 16}], x] (* Michael De Vlieger, Oct 13 2019 *)
    Table[6^(2*n-1)*Pochhammer[1/6, n]/n!, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
  • PARI
    vector(20, n, 6^(n-1)*prod(j=1,n, 6*j-5)/n! ) \\ G. C. Greubel, Nov 11 2019
    
  • Sage
    [6^(n-1)*product( (6*j-5) for j in (1..n))/factorial(n) for n in (1..20)] # G. C. Greubel, Nov 11 2019
    

Formula

a(n) = 6^(n-1)*A008542(n)/n!.
G.f.: (-1+(1-36*x)^(-1/6))/6.
D-finite with recurrence: n*a(n) + 6*(-6*n+5)*a(n-1) = 0. - R. J. Mathar, Jan 28 2020
a(n) ~ 6^(2*n-1) * n^(-5/6) / Gamma(1/6). - Amiram Eldar, Aug 18 2025

A091546 First column of the array A092077 ((8,2)-Stirling2).

Original entry on oeis.org

1, 56, 10192, 3872960, 2517424000, 2497284608000, 3511182158848000, 6643156644540416000, 16275733779124019200000, 50129260039701979136000000, 189588861470152885092352000000, 863766852858016544480755712000000, 4666068539139005373285042356224000000, 29489553167358513959161467691335680000000
Offset: 1

Views

Author

Wolfdieter Lang, Feb 13 2004

Keywords

Comments

Also seventh column (m=6) of triangle A091543.

Crossrefs

Programs

  • Mathematica
    a[n_] := 6^(2*n) * Pochhammer[1/6, n] * Pochhammer[1/3, n] / 2; Array[a, 20] (* Amiram Eldar, Aug 30 2025 *)

Formula

a(n) = (2^(n-1))*Product_{j=0..n-1} ((3*j+1)*(6*j+1)), n>=1. From eq.12 of the Blasiak et al. reference with r=8, s=2, k=1.
a(n) = (6^(2*n))*risefac(1/6, n)*risefac(1/3, n)/2, n>=1, with risefac(x, n) = Pochhammer(x, n).
a(n) = fac6(6*n-5)*fac6(6*n-4)/2, n>=1, with fac6(6*n-5) = A008542(n) and fac6(6*n-4)/2 = A034689(n)= (2^(n-1))*A007559(n), (6-factorials).
a(n) ~ Pi * (6/e)^(2*n) * n^(2*n-1/2) / (Gamma(1/6) * Gamma(1/3)). - Amiram Eldar, Aug 30 2025

A243308 Decimal expansion of h_3, a constant related to certain evaluations of the gamma function from elliptic integrals.

Original entry on oeis.org

1, 0, 1, 7, 4, 0, 8, 7, 9, 7, 5, 9, 5, 9, 5, 6, 0, 0, 8, 6, 6, 9, 5, 3, 8, 7, 5, 3, 3, 5, 0, 0, 6, 3, 4, 2, 5, 9, 9, 5, 2, 5, 6, 9, 1, 8, 5, 4, 5, 4, 1, 1, 8, 9, 9, 9, 1, 5, 0, 5, 4, 2, 3, 7, 5, 3, 5, 2, 1, 2, 4, 3, 1, 8, 0, 6, 2, 5, 0, 1, 6, 3, 9, 4, 4, 2, 3, 6, 6, 6, 5, 0, 9, 7, 6, 1, 2, 0, 0, 7, 9, 2, 7
Offset: 1

Views

Author

Jean-François Alcover, Jun 03 2014

Keywords

Examples

			1.0174087975959560086695387533500634259952569...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.5.4 Gamma function, p. 34.

Crossrefs

Programs

  • Maple
    Re(evalf(4*EllipticK(sqrt((4*sqrt(3)-7)))/(sqrt(2+sqrt(3))*Pi), 120)); # Vaclav Kotesovec, Apr 22 2015
  • Mathematica
    RealDigits[4*EllipticK[4*Sqrt[3]-7]/(Sqrt[2+Sqrt[3]]*Pi), 10, 103] // First
    RealDigits[1/ArithmeticGeometricMean[1, Sqrt[2 + Sqrt[3]]/2], 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)
    RealDigits[2 EllipticK[(2 - Sqrt[3])/4]/Pi, 10, 103][[1]] (* Jan Mangaldan, Jan 06 2017 *)

Formula

4*K(4*sqrt(3)-7)/(sqrt(2+sqrt(3))*Pi), where K is the complete elliptic integral of the first kind.
3^(1/4)*GAMMA(1/3)^3/(2*2^(1/3)*Pi^2), where GAMMA is the Euler Gamma function.
GAMMA(1/6)^(3/2)/(2^(5/6)*sqrt(3)*Pi^(5/4)).

A357318 Decimal expansion of 1/(2*L), where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

9, 2, 0, 3, 7, 1, 3, 7, 3, 3, 1, 7, 9, 4, 2, 4, 9, 7, 6, 5, 5, 5, 1, 8, 5, 6, 4, 5, 4, 3, 1, 7, 2, 9, 9, 4, 7, 2, 6, 2, 4, 5, 7, 9, 1, 9, 4, 9, 8, 9, 4, 3, 3, 8, 3, 4, 3, 3, 0, 0, 1, 9, 9, 7, 7, 3, 1, 0, 1, 8, 0, 8, 0, 8, 0, 5, 6, 8, 5, 6, 3, 9, 3, 6, 3, 3, 8, 5
Offset: 0

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			0.9203713733179424976555185645431729947262...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]),88]]]
  • PARI
    1/(2*gamma(1/3)*gamma(5/6)/gamma(1/6)) \\ Michel Marcus, Sep 24 2022

Formula

Equals 1/(2*A081760) = A175379/(2*A073005*A203145).
Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2))*exp(2*Pi*i*(k/3-m/3)).
Equals Sum_{k>=0} (binomial(-1/3,2*k)^2 - binomial(-1/3,2*k+1)^2). - Gerry Martens, Jul 24 2023
Equals 3*Gamma(1/3)^3 / (2^(8/3) * Pi^2). - Vaclav Kotesovec, Jul 27 2023

A355178 Decimal expansion of 2^(-2/3)/L, where L is the conjectured Landau's constant A081760.

Original entry on oeis.org

1, 1, 5, 9, 5, 9, 5, 2, 6, 6, 9, 6, 3, 9, 2, 8, 3, 6, 5, 7, 6, 9, 9, 9, 2, 0, 5, 1, 5, 7, 0, 0, 2, 0, 8, 8, 1, 9, 4, 5, 1, 6, 5, 2, 6, 3, 4, 3, 9, 7, 8, 2, 8, 5, 5, 2, 6, 3, 1, 0, 5, 0, 5, 9, 7, 4, 7, 9, 7, 3, 7, 5, 7, 2, 0, 5, 2, 8, 6, 2, 5, 8, 6, 5, 8, 0, 8, 5, 2, 5
Offset: 1

Views

Author

Stefano Spezia, Sep 23 2022

Keywords

Examples

			1.159595266963928365769992051570020881945...
		

Crossrefs

Programs

  • Mathematica
    First[RealDigits[N[2^(1/3)*Gamma[1/6]/(2Gamma[1/3]Gamma[5/6]), 90]]]

Formula

Equals Sum_{k,m in Z^2} exp(-Pi*(2/sqrt(3))*(k^2+k*m+m^2)).
From Gerry Martens, Jul 29 2023: (Start)
Equals hypergeom([1/3, 2/3], [1], 1/2).
Equals sqrt(Pi)/(Gamma(2/3)*Gamma(5/6)). (End)
Previous Showing 11-18 of 18 results.