cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A147748 Row sums of Riordan array ((1-3x+x^2)/(1-4x+3x^2), x(1-2x)/(1-4x+3x^2)).

Original entry on oeis.org

1, 2, 6, 20, 70, 250, 900, 3250, 11750, 42500, 153750, 556250, 2012500, 7281250, 26343750, 95312500, 344843750, 1247656250, 4514062500, 16332031250, 59089843750, 213789062500, 773496093750, 2798535156250, 10125195312500
Offset: 0

Views

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Row sums of A147747. Binomial transform of A061646.
Counts all paths of length (2*n), n>=0, starting at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010
From L. Edson Jeffery, Apr 19 2011: (Start)
For the 5 X 5 unit-primitive matrix (see [Jeffery])
A_(10,1) = [0,1,0,0,0; 1,0,1,0,0; 0,1,0,1,0; 0,0,1,0,1; 0,0,0,2,0],
a(n) = (Trace([A_(10,1)]^(2*n)))/5. (See also A189315.) (End)

Crossrefs

Programs

  • Maple
    with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):= add(B(n)[1,k], k=1..9); od: seq(a(2*n), n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    (1 - 3x + x^2)/(1 - 5x + 5x^2) + O[x]^25 // CoefficientList[#, x]& (* Jean-François Alcover, Oct 05 2016 *)

Formula

G.f.: (1-3*x+x^2)/(1-5*x+5*x^2).
a(n) = 5*a(n-1) - 5*a(n-2) for n > 2, a(0)=1, a(1)=2, a(2)=6. - Philippe Deléham, Nov 13 2008
For n >= 1: a(n) = (2/5)*((5-sqrt(5))/2)^n + (2/5)*((5+sqrt(5))/2)^n. - Richard Choulet, Nov 14 2008
G.f.: 1/(1-2x/(1-x/(1-x/(1-x)))) (hence sequence approximates A000984 in first few terms). - Paul Barry, Aug 05 2009
a(n) = (1/5)*Sum_{k=1..5} (x_k)^(2*n), x_k=2*cos((2*k-1)*Pi/10). - L. Edson Jeffery, Apr 19 2011
From R. J. Mathar, Apr 20 2011: (Start)
a(n) = A030191(n) - 3*A030191(n-1) + A030191(n-2).
a(n) = 2*A081567(n-1), n > 0. (End)
a(n) = Sum_{k=0..n} A147746(n,k)*2^k. - Philippe Deléham, Oct 30 2011
E.g.f.: (1 + 4*exp(5*x/2)*cosh(sqrt(5)*x/2))/5. - Stefano Spezia, Jul 09 2024

A216212 Number of n step walks (each step +-1 starting from 0) which are never more than 4 or less than -4.

Original entry on oeis.org

1, 2, 4, 8, 16, 30, 60, 110, 220, 400, 800, 1450, 2900, 5250, 10500, 19000, 38000, 68750, 137500, 248750, 497500, 900000, 1800000, 3256250, 6512500, 11781250, 23562500, 42625000, 85250000, 154218750, 308437500, 557968750, 1115937500, 2018750000, 4037500000
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Comments

The number of n step walks (each step +-1 starting from 0) which are never more than k or less than -k is given by a(n,k) = 2^n/(k+1)*Sum_{r=1..k+1} (-1)^r*cos((Pi*(2*r-1))/(2*(k+1)))^n*cot((Pi*(1-2*r))/(4*(k+1))), n<>0 if k even. Here we have k=4. - Herbert Kociemba, Sep 22 2020

Crossrefs

Cf. A068911, A068912, A068913, A178381 (starting from 4).

Programs

  • Mathematica
    nn=30;CoefficientList[Series[(1+x-x^2)^2/(1-5x^2+5x^4),{x,0,nn}],x] (* Geoffrey Critzer, Jan 14 2014 *)
    a[0,4]=1; a[n_,k_]:=2^n/(k+1) Sum[(-1)^r Cos[(Pi (2r-1))/(2 (k+1))]^n Cot[(Pi (1-2r))/(4 (k+1))],{r,1,k+1}]
    Table[a[n,4],{n,0,40}]//Round (* Herbert Kociemba, Sep 22 2020 *)

Formula

a(n) = A068913(4,n).
G.f.: (1+2*x-x^2-2*x^3+x^4)/(1-5*x^2+5*x^4).
a(n) = 5*a(n-2) - 5*a(n-4), a(0) = 1, a(1) = 2, a(2) = 4, a(3) = 8, a(4) = 16.
a(2*n+1) = 2*A039717(n+1), a(2*n+2) = 4*A039717(n+1).
a(n) = (2^n/5)*Sum_{r=1..5} (-1)^r*cos(Pi*(2*r-1)/10)^n*cot(Pi*(1-2*r)/20), n>0. - Herbert Kociemba, Sep 22 2020

A109106 a(n) = (1/sqrt(5))*((sqrt(5) + 1)*((15 + 5*sqrt(5))/2)^(n-1) + (sqrt(5) - 1)*((15 - 5*sqrt(5))/2)^(n-1)).

Original entry on oeis.org

2, 20, 250, 3250, 42500, 556250, 7281250, 95312500, 1247656250, 16332031250, 213789062500, 2798535156250, 36633300781250, 479536132812500, 6277209472656250, 82169738769531250, 1075615844726562500
Offset: 1

Views

Author

Emeric Deutsch, Jun 19 2005

Keywords

Comments

Kekulé numbers for certain benzenoids.

References

  • S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (p. 215, K{T_m}).

Crossrefs

Cf. A179135. - Johannes W. Meijer, Jul 01 2010

Programs

  • Maple
    a:=n->(1/sqrt(5))*((sqrt(5)+1)*((15+5*sqrt(5))/2)^(n-1)+(sqrt(5)-1)*((15-5*sqrt(5))/2)^(n-1)): seq(expand(a(n)),n=1..19);

Formula

G.f.: 2z(1-5z)/(1 - 15z + 25z^2).
From Johannes W. Meijer, Jul 01 2010: (Start)
a(n) = A178381(4*n+2).
Lim_{k->infinity} a(n+k)/a(k) = (A020876(2*n) + 5*A039717(2*n-2)*sqrt(5))/2.
Lim_{n->infinity} A020876(2*n)/(5*A039717(2*n-2)) = sqrt(5).
(End)
a(n) = 2*5^(n-1)*Fibonacci(2*n-1). - Ehren Metcalfe, Apr 21 2018

A179135 a(n) = (3-sqrt(5))*((3+sqrt(5))/10)^(-n)/2+(3+sqrt(5))*((3-sqrt(5))/10)^(-n)/2.

Original entry on oeis.org

3, 35, 450, 5875, 76875, 1006250, 13171875, 172421875, 2257031250, 29544921875, 386748046875, 5062597656250, 66270263671875, 867489013671875, 11355578613281250, 148646453857421875, 1945807342529296875
Offset: 0

Views

Author

Johannes W. Meijer, Jul 01 2010

Keywords

Crossrefs

Cf. A109106.

Programs

  • Maple
    with(GraphTheory): nmax:=72; P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): for n from 0 to nmax do B(n):=A^n; A178381(n):=add(B(n)[1,k],k=1..P); od: for n from 0 to nmax/4-1 do a(n):= A178381(4*n+3) od: seq(a(n),n=0..nmax/4-1);

Formula

a(n) = A178381(4*n+3).
G.f.: (3-10*z)/(1-15*z+25*z^2).
Limit(a(n+k)/a(k), k=infinity) = A000351(n)*A130196(n)/(A128052(n) - A167808(2*n)*sqrt(5)).
Limit(A128052(n)/A167808(2*n),n=infinity) = sqrt(5).
a(n) = 5^n*Lucas(2*(n+1)). - Ehren Metcalfe, Apr 22 2018

A217593 Square array T, read by antidiagonals: T(n,k) = 0 if n-k >=1 or if k-n >= 9, T(0,k) = 1 for k = 0..8, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 5, 0, 0, 0, 1, 5, 9, 5, 0, 0, 0, 1, 6, 14, 14, 0, 0, 0, 0, 1, 7, 20, 28, 14, 0, 0, 0, 0, 0, 8, 27, 48, 42, 0, 0, 0, 0, 0, 0, 8, 35, 75, 90, 42, 0, 0, 0, 0, 0, 0, 0, 43, 110, 165, 132, 0, 0, 0, 0, 0, 0, 0, 0, 43, 153, 275, 297, 132, 0, 0, 0, 0, 0, 0, 0, 0, 0, 196, 428, 572, 429, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 18 2013

Keywords

Examples

			Square array begins :
1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, ...
0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 0, 0, ...
0, 0, 2, 5, 9, 14, 20, 27, 35, 43, 43, 0, 0, ...
0, 0, 0, 5, 14, 28, 75, 110, 153, 196, 196, 0, 0, ....
0, 0, 0, 0, 14, 42, 90, 165, 275, 428, 624, 820, 820, 0, 0, ...
...
Square array, read by rows, with 0 omitted:
1, 1, 1, 1, 1, 1, 1, 1, 1
1, 2, 3, 4, 5, 6, 7, 8, 8
2, 5, 9, 14, 20, 27, 35, 43, 43
5, 14, 28, 48, 75, 110, 153, 196, 196
14, 42, 90, 165, 275, 428, 624, 820, 820
42, 132, 297, 572, 1000, 1624, 2444, 3264, 3264
132, 429, 1001, 2001, 3625, 6069, 9333, 12597, 12597
429, 1430, 3431, 7056, 13125, 22458, 35055, 47652, 47652
...
		

References

  • A hexagon arithmetic of E. Lucas.

Formula

T(n,n) = A033191(n).
T(n,n+1) = A033191(n+1).
T(n,n+2) = A033190(n+1).
T(n,n+3) = A094667(n+1).
T(n,n+4) = A093131(n+1) = A030191(n).
T(n,n+5) = A094788(n+2).
T(n,n+6) = A094825(n+3).
T(n,n+7) = T(n,n+8) = A094865(n+3).
Sum_{k, 0<=k<=n} T(n-k,k) = A178381(n).

A336675 Number of paths of length n starting at initial node of the path graph P_10.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 251, 460, 911, 1690, 3327, 6225, 12190, 22950, 44744, 84626, 164407, 312019, 604487, 1150208, 2223504, 4239225, 8181175, 15621426, 30108147, 57556155, 110820165, 212037241, 407946421, 781074572, 1501844193, 2877011660, 5529362694
Offset: 0

Views

Author

Nachum Dershowitz, Jul 30 2020

Keywords

Comments

Also the number of paths along a corridor width 10, starting from one side.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=10. - Herbert Kociemba, Sep 14 2020

Crossrefs

This is row 10 of A094718. Bisections give A224514 (even part), A216710 (odd part).
Cf. A000004 (row 0), A000007 (row 1), A000012 (row 2), A016116 (row 3), A000045 (row 4), A038754 (row 5), A028495 (row 6), A030436 (row 7), A061551 (row 8), A178381 (row 9), this sequence (row 10), A336678 (row 11), A001405 (limit).

Programs

  • Maple
    X := j -> (-1)^(j/11) - (-1)^(1-j/11):
    a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9])/11:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
  • Mathematica
    a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,10],{n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
  • PARI
    my(x='x+O('x^44)); Vec((1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5)) \\ Joerg Arndt, Jul 31 2020

Formula

From Stefano Spezia, Jul 30 2020: (Start)
G.f.: (1 - 3*x^2 + x^4)/(1 - x - 4*x^2 + 3*x^3 + 3*x^4 - x^5).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 3*a(n-4) + a(n-5) for n > 4. (End)
a(n) = (2^n/11)*Sum_{r=1..10} (1-(-1)^r)*cos(Pi*r/11)^n*(1+cos(Pi*r/11)). - Herbert Kociemba, Sep 14 2020

A336678 Number of paths of length n starting at initial node of the path graph P_11.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 126, 252, 461, 922, 1702, 3404, 6315, 12630, 23494, 46988, 87533, 175066, 326382, 652764, 1217483, 2434966, 4542526, 9085052, 16950573, 33901146, 63255670, 126511340, 236063915, 472127830, 880983606, 1761967212, 3287837741
Offset: 0

Views

Author

Nachum Dershowitz, Jul 30 2020

Keywords

Comments

Also the number of paths along a corridor width 11, starting from one side.
In general, a(n,m) = (2^n/(m+1))*Sum_{r=1..m} (1-(-1)^r)*cos(Pi*r/(m+1))^n*(1+cos(Pi*r/(m+1))) gives the number of paths of length n starting at the initial node on the path graph P_m. Here we have m=11. - Herbert Kociemba, Sep 14 2020

Crossrefs

This is row 11 of A094718. Bisections give A087944 (even part), A087946 (odd part).
Cf. A000004 (row 0), A000007 (row 1), A000012 (row 2), A016116 (row 3), A000045 (row 4), A038754 (row 5), A028495 (row 6), A030436 (row 7), A061551 (row 8),
A178381 (row 9), A336675 (row 10), this sequence (row 11), A001405 (limit).

Programs

  • Maple
    X := j -> (-1)^(j/12) - (-1)^(1-j/12):
    a := k -> add((2 + X(j))*X(j)^k, j in [1, 3, 5, 7, 9, 11])/12:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 17 2020
  • Mathematica
    LinearRecurrence[{0, 6, 0, -9, 0, 2}, {1, 1, 2, 3, 6, 10}, 40] (* Harvey P. Dale, Sep 08 2020 *)
    a[n_,m_]:=2^(n+1)/(m+1) Module[{x=(Pi r)/(m+1)},Sum[Cos[x]^n (1+Cos[x]),{r,1,m,2}]]
    Table[a[n,11], {n,0,40}]//Round (* Herbert Kociemba, Sep 14 2020 *)
  • PARI
    my(x='x+O('x^44)); Vec(-(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1))) \\ Joerg Arndt, Jul 31 2020

Formula

G.f.: -(x^5+3*x^4-3*x^3-4*x^2+x+1)/((2*x^2-1)*(x^4-4*x^2+1)).
a(n) = (2^n/12)*Sum_{r=1..11} (1-(-1)^r)*cos(Pi*r/12)^n*(1+cos(Pi*r/12)). - Herbert Kociemba, Sep 14 2020
Previous Showing 11-17 of 17 results.