cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A081567 Second binomial transform of F(n+1).

Original entry on oeis.org

1, 3, 10, 35, 125, 450, 1625, 5875, 21250, 76875, 278125, 1006250, 3640625, 13171875, 47656250, 172421875, 623828125, 2257031250, 8166015625, 29544921875, 106894531250, 386748046875, 1399267578125, 5062597656250, 18316650390625, 66270263671875, 239768066406250
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Binomial transform of F(2*n-1), index shifted by 1, where F is A000045. - corrected by Richard R. Forberg, Aug 12 2013
Case k=2 of family of recurrences a(n) = (2k+1)*a(n-1) - A028387(k-1)*a(n-2), a(0)=1, a(1)=k+1.
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n+1, s(0) = 3, s(2*n+1) = 4.
a(n+1) gives the number of periodic multiplex juggling sequences of length n with base state <2>. - Steve Butler, Jan 21 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Sep 14 2008
Counts all paths of length (2*n+1), n>=0, starting at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010
Given the 3 X 3 matrix M = [1,1,1; 1,1,0; 1,1,3], a(n) = term (1,1) in M^(n+1). - Gary W. Adamson, Aug 06 2010
Number of nonisomorphic graded posets with 0 and 1 of rank n+2, with exactly 2 elements of each rank level between 0 and 1. Also the number of nonisomorphic graded posets with 0 of rank n+1, with exactly 2 elements of each rank level above 0. (This is by Stanley's definition of graded, that all maximal chains have the same length.) - David Nacin, Feb 26 2012
a(n) = 3^n a(n;1/3) = Sum_{k=0..n} C(n,k) * F(k-1) * (-1)^k * 3^(n-k), which also implies the Deleham formula given below and where a(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). - Roman Witula, Jul 12 2012
The limiting ratio a(n)/a(n-1) is 1 + phi^2. - Bob Selcoe, Mar 17 2014
a(n) counts closed walks on K_2 containing 3 loops on the index vertex and 2 loops on the other. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(3,1; 1,2). - David Neil McGrath, Nov 18 2014

Examples

			a(4)=125: 35*(3 + (35 mod 10 - 10 mod 3)/(10-3)) = 35*(3 + 4/7) = 125. - _Bob Selcoe_, Mar 17 2014
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pages 96-100.

Crossrefs

a(n) = 5*A052936(n-1), n > 1.
Row sums of A114164.
Cf. A000045, A007051 (INVERTi transform), A007598, A028387, A030191, A039717, A049310, A081568 (binomial transform), A086351 (INVERT transform), A090041, A093129, A094441, A111776, A147748, A178381, A189315.

Programs

  • Magma
    I:=[1, 3]; [n le 2 select I[n] else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 27 2012
    
  • Maple
    with(GraphTheory):G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=23; n2:=nmax*2+2: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..9); od: seq(a(2*n+1),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    Table[MatrixPower[{{2,1},{1,3}},n][[2]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{5,-5},{1,3},30] (* Vincenzo Librandi, Feb 27 2012 *)
  • PARI
    Vec((1-2*x)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Mar 18 2014
  • Python
    def a(n, adict={0:1, 1:3}):
        if n in adict:
            return adict[n]
        adict[n]=5*a(n-1) - 5*a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    

Formula

a(n) = 5*a(n-1) - 5*a(n-2) for n >= 2, with a(0) = 1 and a(1) = 3.
a(n) = (1/2 - sqrt(5)/10) * (5/2 - sqrt(5)/2)^n + (sqrt(5)/10 + 1/2) * (sqrt(5)/2 + 5/2)^n.
G.f.: (1 - 2*x)/(1 - 5*x + 5*x^2).
a(n-1) = Sum_{k=1..n} binomial(n, k)*F(k)^2. - Benoit Cloitre, Oct 26 2003
a(n) = A090041(n)/2^n. - Paul Barry, Mar 23 2004
The sequence 0, 1, 3, 10, ... with a(n) = (5/2 - sqrt(5)/2)^n/5 + (5/2 + sqrt(5)/2)^n/5 - 2(0)^n/5 is the binomial transform of F(n)^2 (A007598). - Paul Barry, Apr 27 2004
From Paul Barry, Nov 15 2005: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n, j)*binomial(j+k, 2k);
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n, k+j)*binomial(k, k-j)2^(n-k-j);
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(n+k-j, n-k-j)*binomial(k, j)(-1)^j*2^(n-k-j). (End)
a(n) = A111776(n, n). - Abdullahi Umar, Sep 14 2008
a(n) = Sum_{k=0..n} A094441(n,k)*2^k. - Philippe Deléham, Dec 14 2009
a(n+1) = Sum_{k=-floor(n/5)..floor(n/5)} ((-1)^k*binomial(2*n, n+5*k)/2). -Mircea Merca, Jan 28 2012
a(n) = A030191(n) - 2*A030191(n-1). - R. J. Mathar, Jul 19 2012
G.f.: Q(0,u)/x - 1/x, where u=x/(1-2*x), Q(k,u) = 1 + u^2 + (k+2)*u - u*(k+1 + u)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
For n>=3: a(n) = a(n-1)*(3+(a(n-1) mod a(n-2) - a(n-2) mod a(n-3))/(a(n-2) - a(n-3))). - Bob Selcoe, Mar 17 2014
a(n) = sqrt(5)^(n-1)*(3*S(n-1, sqrt(5)) - sqrt(5)*S(n-2, sqrt(5))) with Chebyshev's S-polynomials (see A049310), where S(-1, x) = 0 and S(-2, x) = -1. This is the (1,1) entry of A^n with the matrix A=(3,1;1,2). See the comment by David Neil McGrath, Nov 18 2014. - Wolfdieter Lang, Dec 04 2014
Conjecture: a(n) = 2*a(n-1) + A039717(n). - Benito van der Zander, Nov 20 2015
a(n) = A189315(n+1) / 10. - Tom Copeland, Dec 08 2015
a(n) = A093129(n) + A030191(n-1). - Gary W. Adamson, Apr 24 2023
E.g.f.: exp(5*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024

A178381 Number of paths of length n starting at initial node of the path graph P_9.

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 20, 35, 70, 125, 250, 450, 900, 1625, 3250, 5875, 11750, 21250, 42500, 76875, 153750, 278125, 556250, 1006250, 2012500, 3640625, 7281250, 13171875, 26343750, 47656250, 95312500, 172421875, 344843750
Offset: 0

Views

Author

Johannes W. Meijer, May 27 2010, May 29 2010

Keywords

Comments

Counts all paths of length n, n>=0, starting at initial node on the path graph P_9, see the Maple program.
The a(n) represent the number of possible chess games, ignoring the fifty-move and the triple repetition rules, after n moves by White in the following position: White Ka1, Nh1, pawns a2, b6, c2, d6, f2, g3 and g4; Black Ka8, Bc8, pawns a3, b7, c3, d7, f3 and g5.
The path graphs P_(2*p) have as limit(a(n+1)/a(n), n =infinity) = 2 resp. hypergeom([(p-1)/(2*p+1),(p+2)/(2*p+1)],[1/2],3/4) and the path graphs P_(2*p+1) have as limit(a(n+1)/a(n), n =infinity) = 1+cos(Pi/(p+1)), p>=1; see the crossrefs. - Johannes W. Meijer, Jul 01 2010

Examples

			G.f. = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 35*x^7 + 70*x^8 + ...
		

Crossrefs

This is row 9 of A094718.
a(2*n) = A147748(n) and a(2*n+1) = A081567(n).
a(4*n+2) = A109106(n) and a(4*n+3) = A179135(n).
Cf. A000007 (P_1), A000012 (P_2), A016116 (P_3), A000045 (P_4), A038754 (P_5), A028495 (P_6), A030436 (P_7), A061551 (P_8), this sequence (P_9), A336675 (P_10), A336678 (P_11), and A001405 (P_infinity).
Cf. A216212 (P_9 starting in the middle).

Programs

  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4))); // G. C. Greubel, Sep 18 2018
  • Maple
    with(GraphTheory): P:=9: G:=PathGraph(P): A:= AdjacencyMatrix(G): nmax:=36; for n from 0 to nmax do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..P); od: seq(a(n),n=0..nmax);
    r := j -> (-1)^(j/10) - (-1)^(1-j/10):
    a := k -> add((2 + r(j))*r(j)^k, j in [1, 3, 5, 7, 9])/10:
    seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 18 2020
  • Mathematica
    CoefficientList[Series[(1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4), {x,0,50}], x] (* G. C. Greubel, Sep 18 2018 *)
  • PARI
    x='x+O('x^50); Vec((1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4)) \\ G. C. Greubel, Sep 18 2018
    

Formula

G.f.: (1+x-3*x^2-2*x^3+x^4)/(1-5*x^2+5*x^4).
a(n) = 5*a(n-2) - 5*a(n-4) for n>=5 with a(0)=1, a(1)=1, a(2)=2, a(3)=3 and a(4)=6.
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 + x / (1 - x / (1 - x / (1 + x / (1 + x)))))))). - Michael Somos, Feb 08 2015

A216219 Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=5 or if k-n>=5, T(4,0) = T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 1, 0, 5, 10, 10, 5, 0, 0, 5, 15, 20, 15, 5, 0, 0, 0, 20, 35, 35, 20, 0, 0, 0, 0, 20, 55, 70, 55, 20, 0, 0, 0, 0, 0, 75, 125, 125, 75, 0, 0, 0, 0, 0, 0, 75, 200, 250, 200
Offset: 0

Views

Author

Philippe Deléham, Mar 13 2013

Keywords

Examples

			Square array begins:
1, 1,  1,  1,   1,   0,   0,   0,    0,    0, 0, ...
1, 2,  3,  4,   5,   5,   0,   0,    0,    0, 0, ...
1, 3,  6, 10,  15,  20,  20,   0,    0,    0, 0, ...
1, 4, 10, 20,  35,  55,  75,  75,    0,    0, 0, ...
1, 5, 15, 35,  70, 125, 200, 275,  275,    0, 0, ...
0, 5, 20, 55, 125, 250, 450, 725, 1000, 1000, 0, ...
0, 0, 20, 75, 200, 450, 900, ...
		

Crossrefs

Formula

T(n,n) = A147748(n).
T(n+1,n) = T(n,n+1) = A081567(n).
T(n+2,n) = T(n,n+2) = A039717(n+1).
T(n+3,n) = T(n+4,n) = T(n,n+3) = T(n,n+4) = A030191(n).
Sum_{k, 0<=k<=n} T(n-k,k) = A068913(4,n) = A216212(n).

A033191 Binomial transform of [ 1, 0, 1, 1, 3, 6, 15, 36, 91, 231, 595, ... ], which is essentially binomial(Fibonacci(k) + 1, 2).

Original entry on oeis.org

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4861, 16778, 58598, 206516, 732825, 2613834, 9358677, 33602822, 120902914, 435668420, 1571649221, 5674201118, 20497829133, 74079051906, 267803779710, 968355724724, 3502058316337, 12666676646162, 45818284122149
Offset: 0

Views

Author

Simon P. Norton

Keywords

Comments

Number of (s(0), s(1), ..., s(2n)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n, s(0) = 1, s(2n) = 1. - Herbert Kociemba, Jun 14 2004
The sequence 1,2,5,14,... has g.f. 1/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-2x)))) = (1-6x+10x^2-4x^3)/(1-8x+21x^2-20x^3+5x^4), and is the second binomial transform A001519 aerated. - Paul Barry, Dec 17 2009
Counts all paths of length (2*n), n>=0, starting and ending at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010

Examples

			1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + ...
		

Crossrefs

Cf. A033192.
Cf. A211216.

Programs

  • Maple
    with(GraphTheory): G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=24; n2:=nmax*2: for n from 0 to n2 do B(n):=A^n; a(n):=B(n)[1,1]; od: seq(a(2*n),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    CoefficientList[Series[(1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4), {x,0,30}],x] (* or *) Join[{1},LinearRecurrence[{8,-21,20,-5},{1,2,5,14}, 30]]  (* Harvey P. Dale, Apr 26 2011 *)
  • PARI
    {a(n) = local(A); A = 1; for( i=1, 8, A = 1 / (1 - x*A)); polcoeff( A + x * O(x^n), n)} /* Michael Somos, May 12 2012 */

Formula

G.f.: (1-7x+15x^2-10x^3+x^4)/(1-8x+21x^2-20x^3+5x^4). - Ralf Stephan, May 13 2003
From Herbert Kociemba, Jun 14 2004: (Start)
a(n) = (1/5)*Sum_{r=1..9} sin(r*Pi/10)^2*(2*cos(r*Pi/10))^(2n), n >= 1;
a(n) = 8*a(n-1) - 21*a(n-2) + 20*a(n-3) - 5*a(n-4), n >= 5. (End)
G.f.: 1 / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x / (1 - x )))))))). - Michael Somos, May 12 2012

A189315 Expansion of g.f. 5*(1-3*x+x^2)/(1-5*x+5*x^2).

Original entry on oeis.org

5, 10, 30, 100, 350, 1250, 4500, 16250, 58750, 212500, 768750, 2781250, 10062500, 36406250, 131718750, 476562500, 1724218750, 6238281250, 22570312500, 81660156250, 295449218750, 1068945312500, 3867480468750, 13992675781250, 50625976562500, 183166503906250, 662702636718750
Offset: 0

Views

Author

L. Edson Jeffery, Apr 20 2011

Keywords

Comments

Let A be the unit-primitive matrix (see [Jeffery])
A=A_(10,1)=
(0 1 0 0 0)
(1 0 1 0 0)
(0 1 0 1 0)
(0 0 1 0 1)
(0 0 0 2 0).
Then a(n) = Trace(A^(2*n)).
Evidently one of a class of accelerator sequences for Catalan's constant based on traces of successive powers (here they are A^(2*n)) of a unit-primitive matrix A_(N,r) (0
From Tom Copeland, Dec 08 2015: (Start)
These are also the non-vanishing traces for the adjacency matrices of the simple Lie algebras B_5 and C_5. See links for B_4, A265185, and B_3, A025192.
a(n+1) = 10 * A081567(n), and, ignoring a(0), a G.F. is 10 *(1-2*x)/(1-5*x+5*x^2) whose denominator is y^5 * A127672(5,1/y) with y = sqrt(x).
-log(1 - 5x^2 + 5x^4) = 10 x^2/2 + 30 x^4/4 + ... provides a logarithmic series for the traces of both the odd and even powers of the matrix beginning with the first power. (End)

Programs

  • Magma
    I:=[5,10,30]; [n le 3 select I[n] else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Dec 09 2015
  • Mathematica
    CoefficientList[Series[5(1-3x+x^2)/(1-5x+5x^2),{x,0,40}],x] (* or *)
    Join[{5},LinearRecurrence[{5,-5},{10,30},40]]  (* Harvey P. Dale, Apr 25 2011 *)
  • PARI
    Vec(5*(1-3*x+x^2)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 24 2012
    

Formula

a(n) = 5*a(n-1)-5*a(n-2), n>2, a(0)=5, a(1)=10, a(2)=30.
a(n) = Sum_{k=1..5} (w_k)^(2*n), w_k=2*cos((2*k-1)*Pi/10).
a(n) = 2^(1-n)*((5-Sqrt(5))^n+(5+Sqrt(5))^n), for n>0, with a(0)=5.
a(n) = 5*A147748(n).
E.g.f.: 1 + 4*exp(5*x/2)*cosh(sqrt(5)*x/2). - Stefano Spezia, Jul 09 2024

A147746 Riordan array (1, x(1-2x)/(1-3x+x^2)).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 5, 5, 3, 1, 0, 13, 14, 9, 4, 1, 0, 34, 40, 28, 14, 5, 1, 0, 89, 114, 87, 48, 20, 6, 1, 0, 233, 323, 267, 161, 75, 27, 7, 1, 0, 610, 910, 809, 528, 270, 110, 35, 8, 1
Offset: 0

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle [0,1,1,1,0,0,0,....] DELTA [1,0,0,0,...] with Deléham DELTA as in A084938.
Note that 1/(1-x/(1-x/(1-x))) = (1-2x)/(1-3x+x^2). Row sums are A124302.

Examples

			Triangle begins
  1;
  0,   1;
  0,   1,   1;
  0,   2,   2,   1;
  0,   5,   5,   3,   1;
  0,  13,  14,   9,   4,   1;
  0,  34,  40,  28,  14,   5,   1;
  0,  89, 114,  87,  48,  20,   6,   1;
  ...
		

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[1&, # (1-2#)/(1-3#+#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)

Formula

Sum_{k=0..n} T(n,k)*2^k = A147748(n). - Philippe Deléham, Oct 30 2011
Sum_{k=0..n} T(n,k)*(-1)^(n-k) = A215936(n). - Philippe Deléham, Aug 30 2012
G.f.: (1 - 3*x + x^2)/(1 - 3*x + x^2 - x*y + 2*x^2*y). - R. J. Mathar, Aug 11 2015

A147747 Riordan array ((1-3x+x^2)/(1-4x+3x^2), x(1-2x)/(1-4x+3x^2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 9, 5, 1, 14, 28, 20, 7, 1, 41, 89, 75, 35, 9, 1, 122, 285, 273, 154, 54, 11, 1, 365, 913, 974, 634, 273, 77, 13, 1, 1094, 2918, 3420, 2502, 1256, 440, 104, 15, 1, 3281, 9297, 11850, 9578, 5439, 2239, 663, 135, 17, 1
Offset: 0

Author

Paul Barry, Nov 11 2008

Keywords

Comments

Triangle [1,1,1,1,0,0,0,....] DELTA [1,0,0,0,....] with DELTA as in A084938.

Examples

			Triangle begins
1,
1, 1,
2, 3, 1,
5, 9, 5, 1,
14, 28, 20, 7, 1,
41, 89, 75, 35, 9, 1,
122, 285, 273, 154, 54, 11, 1
		

Programs

  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    RiordanArray[(1-3#+#^2)/(1-4#+3#^2)&, # (1-2#)/(1-4#+3#^2)&, 10] // Flatten (* Jean-François Alcover, Jul 19 2019 *)

Formula

T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 2*T(n-2,k-1), T(0,0) = T(0,1) = T(1,1) = T(2,2) = 1, T(2,0) = 2, T(2,1) = 3, T(n,k) = 0 if k>n or if k<0. - Philippe Deléham, Oct 29 2013
G.f.: (1 - 3*x + x^2)/(1 - 4*x + 3*x^2 - x*y + 2*x^2*y). - Philippe Deléham, Oct 29 2013
Showing 1-7 of 7 results.