cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A195240 Numerators of the second differences of the sequence of fractions (-1)^(n+1)*A176618(n)/A172031(n).

Original entry on oeis.org

0, 1, 1, 7, 8, 11, 10, 7, 8, 19, 14, 337, 1028, 5, -2, -1681, 1936, 22133, -21734, -87223, 87388, 427291, -427222, -118181363, 118182728, 4276553, -4276550, -11874730297, 11874730732, 4307920641583
Offset: 0

Views

Author

Paul Curtz, Sep 13 2011

Keywords

Comments

The array of (-1)^n*A176328(n)/A176591(n) and its first, second, etc. differences in subsequence rows starts as follows:
0, 1, 2, 19/6, 14/3, 199/30, 137/15, ... (-1)^n * A176328(n)/A176591(n),
1, 1, 7/6, 3/2, 59/30, 5/2, 127/42, ... see A176328,
0, 1/6, 1/3, 7/15, 8/15, 11/21, 10/21, ...
1/6, 1/6, 2/15, 1/15, -1/105, -1/21, -1/105, ... see A190339
0, -1/30, -1/15, -8/105, -4/105, 4/105, -116/1155, ...
The numerators in the 3rd row, 0, 1/6, 1/3, 7/15, 8/15, 11/21, 10/21, 7/15, 8/15, 19/33, 14/33, 337/1365, 1028/1365, 5/3, -2/3, -1681/255, 1936/255, ... define the current sequence.
The associated denominators are 1, 6 and followed by 3, 15, 15 etc as provided in A172087.
The second column of the array, 1, 1, 1/6, 1/6, -1/30, -1/30, ... contains doubled A000367(n)/A002445(n). These are related to A176150, A176144, and A176184.
In the first subdiagonal of the array we see 1, 1/6, 2/15, -8/150, 8/105, -32/321, 6112/15015, -3712/2145 , ... continued as given by A181130 and A181131.

Programs

  • Maple
    read("transforms") ;
    evb := [0, 1, 0, seq(bernoulli(n), n=2..30)] ;
    ievb := BINOMIALi(evb) ;
    [seq((-1)^n*op(n,ievb),n=1..nops(ievb))] ;
    DIFF(%) ;
    DIFF(%) ;
    apply(numer,%) ; # R. J. Mathar, Sep 20 2011
  • Mathematica
    evb = Join[{0, 1, 0}, Table[BernoulliB[n], {n, 2, 32}]]; ievb = Table[ Sum[Binomial[n, k]*evb[[k+1]], {k, 0, n}], {n, 0, Length[evb]-3}]; Differences[ievb, 2] // Numerator (* Jean-François Alcover, Sep 09 2013, after R. J. Mathar *)

Formula

a(2*n+1) + a(2*n+2) = A172087(2*n+2) = A172087(2*n+3), n >= 1.

A225825 a(2n)=A001896(n). a(2n+1)=(-1)^n*A110501(n+1).

Original entry on oeis.org

1, 1, -1, -1, 7, 3, -31, -17, 127, 155, -2555, -2073, 1414477, 38227, -57337, -929569, 118518239, 28820619, -5749691557, -1109652905, 91546277357, 51943281731, -1792042792463, -2905151042481, 1982765468311237, 191329672483963, -286994504449393, -14655626154768697, 3187598676787461083, 1291885088448017715, -4625594554880206790555
Offset: 0

Views

Author

Paul Curtz, Jul 30 2013

Keywords

Comments

a(n) is the numerators of numbers derived from Bernoulli and Genocchi numbers. The denominators b(n) are the Clausen numbers A141056.
The numbers are
BERGEN(n) = 1, 1/2, -1/6, -1/2, 7/30, 3/2, -31/42, -17/2, 127/30, 155/2,..
Difference table:
1, 1/2, -1/6, -1/2, 7/30, 3/2, -31/42,...
-1/2, -2/3, -1/3, 11/15, 19/15, -47/21, -163/21,...
-1/6, 1/3, 16/15, 8/15, -368/105, -116/21, 2152/105,...
1/2, 11/15, -8/15, -424/105, -212/105, 2732/105, 4204/105,...
7/30, -19/15, -368/195, 212/105, 2944/105, 1472/105,...
-3/2, -47/21, 116/21, 2732/105, -1472/105, -70240/231, -35120/231,... .
a(n) is an autosequence. Its inverse binomial transform is the sequence signed. Its main diagonal is the double of the first upper diagonal.
a(n) is divisible by A051716(n+1).
Denominators of the main diagonal: A181131(n). Checked by Jean-François Alcover for the first 25 terms.
The numerators of the main diagonal:
1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272,...
(thanks to Jean-François Alcover) are divisible by 2^n.

Crossrefs

Cf. A083420.

Programs

  • Maple
    A225825 := proc(n)
        local nhalf ;
        nhalf := floor(n/2) ;
        if type(n,'even') then
            A001896(nhalf) ;
        else
            (-1)^nhalf*A110501(nhalf+1) ;
        end if;
    end proc; # R. J. Mathar, Oct 28 2013
  • Mathematica
    a[0] = 1; a[n_] := Numerator[BernoulliB[n, 1/2] - (n+1)*EulerE[n, 0]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 01 2013 *)

Formula

c(n)=(0 followed by -A036968(n+1)) = 0, 1, 0, -1, 0, 3,... .
a(n) = A157779(n) + c(n).

Extensions

More terms from Jean-François Alcover, Aug 01 2013
Definition corrected by R. J. Mathar, Oct 28 2013

A239275 a(n) = numerator(2^n * Bernoulli(n, 1)).

Original entry on oeis.org

1, 1, 2, 0, -8, 0, 32, 0, -128, 0, 2560, 0, -1415168, 0, 57344, 0, -118521856, 0, 5749735424, 0, -91546451968, 0, 1792043646976, 0, -1982765704675328, 0, 286994513002496, 0, -3187598700536922112, 0, 4625594563496048066560, 0, -16555640873195841519616, 0, 22142170101965089931264, 0
Offset: 0

Views

Author

Paul Curtz, Mar 13 2014

Keywords

Comments

Difference table of f(n) = 2^n *A164555(n)/A027642(n) = a(n)/A141459(n):
1, 1, 2/3, 0, -8/15, 0, 32/21, 0,...
0, -1/3, -2/3, -8/15, 8/15, 32/21, -32/21,...
-1/3, -1/3, 2/15, 16/15, 104/105, -64/21,...
0, 7/15, 14/15, -8/105, -424/105,...
7/15, 7/15, -106/105, -416/105,...
0, -31/21, -62/31,
-31/21, -31/21,...
0,... etc.
Main diagonal: A212196(n)/A181131(n). See A190339(n).
First upper diagonal: A229023(n)/A181131(n).
The inverse binomial transform of f(n) is g(n). Reciprocally, the inverse binomial transform of g(n) is f(n) with -1 instead of f(1)=1, i.e., f(n) signed.
Sum of the antidiagonals: 1,1,0,-1,0,3,0,-17,... = (-1)^n*A036968(n) = -A226158(n+1).
Following A211163(n+2), f(n) is the coefficients of a polynomial in Pi^n.
Bernoulli numbers, twice, and Genocchi numbers, twice, are linked to Pi.
f(n) - g(n) = -A226158(n).
Also the numerators of the centralized Bernoulli polynomials 2^n*Bernoulli(n, x/2+1/2) evaluated at x=1. The denominators are A141459. - Peter Luschny, Nov 22 2015
(-1)^n*a(n) = 2^n*numerator(A027641(n)/A027642(n)) (that is the present sequence with a(1) = -1 instead of +1). - Wolfdieter Lang, Jul 05 2017

Crossrefs

Cf. A141459 (denominators), A001896/A001897, A027641/A027642.

Programs

  • Maple
    seq(numer(2^n*bernoulli(n, 1)), n=0..35); # Peter Luschny, Jul 17 2017
  • Mathematica
    Table[Numerator[2^n*BernoulliB[n, 1]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
  • Python
    from sympy import bernoulli
    def a(n): return (2**n * bernoulli(n, 1)).numerator
    print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017

Formula

a(n) = numerators of 2^n * A164555(n)/A027642(n).
Numerators of the binomial transform of A157779(n)/(interleave A001897(n), 1)(conjectured).

A227577 Square array read by antidiagonals, A(n,k) the numerators of the elements of the difference table of the Euler polynomials evaluated at x=1, for n>=0, k>=0.

Original entry on oeis.org

1, -1, 1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 1, 1, 1, 0, -1, -1, -5, -1, -1, 0, 17, 17, 13, 5, -5, -13, -17, -17, 0, 17, 17, 47, 13, 47, 17, 17, 0, -31, -31, -107, -73, -13, 13, 73, 107, 31, 31, 0, -31, -31, -355
Offset: 0

Views

Author

Paul Curtz, Jul 16 2013

Keywords

Comments

The difference table of the Euler polynomials evaluated at x=1:
1, 1/2, 0, -1/4, 0, 1/2, 0, -17/8, ...
-1/2, -1/2, -1/4, 1/4, 1/2, -1/2, -17/8, 17/8, ...
0, 1/4, 1/2, 1/4; -1, -13/8, 17/4, 107/8, ...
1/4, 1/4, -1/4, -5/4, -5/8, 47/8, 73/8, -355/8, ...
0, -1/2, -1, 5/8 13/2, 13/4, -107/2, -655/8, ...
-1/2, -1/2, 13/8, 47/8, -13/4, -227/4, -227/8, 5687/8, ...
0, 17/8, 17/4, -73/8, -107/2, 227/8, 2957/4, 2957/8, ...
17/8, 17/8, -107/8, -355/8, 655/8, 5687/8, -2957/8, -107125/8, ...
To compute the difference table, take
1, 1/2;
-1/2;
The next term is always half of the sum of the antidiagonals. Hence (-1/2 + 1/2 = 0)
1, 1/2, 0;
-1/2, -1/2;
0;
The first column (inverse binomial transform) lists the numbers (1, -1/2, 0, 1/4, ..., not in the OEIS; corresponds to A027641/A027642). See A209308 and A060096.
A198631(n)/A006519(n+1) is an autosequence. See A181722.
Note the main diagonal: 1, -1/2, 1/2, -5/4, 13/2, -227/4, 2957/4, -107125/8, .... (See A212196/A181131.)
This twice the first upper diagonal. The autosequence is of the second kind.
From 0, -1, the algorithm gives A226158(n), full Genocchi numbers, autosequence of the first kind.
The difference table of the Bernoulli polynomials evaluated at x=1 is (apart from signs) A085737/A085738 and its analysis by Ludwig Seidel was discussed in the Luschny link. - Peter Luschny, Jul 18 2013

Examples

			Read by antidiagonals:
    1;
  -1/2,  1/2;
    0,  -1/2,   0;
   1/4,  1/4, -1/4, -1/4;
    0,   1/4,  1/2,  1/4,   0;
  -1/2, -1/2, -1/4,  1/4,  1/2,  1/2;
    0,  -1/2, - 1,  -5/4,  -1,  -1/2,   0;
  ...
Row sums: 1, 0, -1/2, 0, 1, 0, -17/4, 0, ... = 2*A198631(n+1)/A006519(n+2).
Denominators: 1, 1, 2, 1, 1, 1, 4, 1, ... = A160467(n+2)?
		

Crossrefs

Programs

  • Maple
    DifferenceTableEulerPolynomials := proc(n) local A,m,k,x;
    A := array(0..n,0..n); x := 1;
    for m from 0 to n do for k from 0 to n do A[m,k]:= 0 od od;
    for m from 0 to n do A[m,0] := euler(m,x);
       for k from m-1 by -1 to 0 do
          A[k,m-k] := A[k+1,m-k-1] - A[k,m-k-1] od od;
    LinearAlgebra[Transpose](convert(A, Matrix)) end:
    DifferenceTableEulerPolynomials(7);  # Peter Luschny, Jul 18 2013
  • Mathematica
    t[0, 0] = 1; t[0, k_] := EulerE[k, 1]; t[n_, 0] := -t[0, n]; t[n_, k_] := t[n, k] = t[n-1, k+1] - t[n-1, k]; Table[t[n-k, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2013 *)
  • Sage
    def DifferenceTableEulerPolynomialsEvaluatedAt1(n) :
        @CachedFunction
        def ep1(n):          # Euler polynomial at x=1
            if n < 2: return 1 - n/2
            s = add(binomial(n,k)*ep1(k) for k in (0..n-1))
            return 1 - s/2
        T = matrix(QQ, n)
        for m in range(n) :  # Compute difference table
            T[m,0] = ep1(m)
            for k in range(m-1,-1,-1) :
                T[k,m-k] = T[k+1,m-k-1] - T[k,m-k-1]
        return T
    def A227577_list(m):
        D = DifferenceTableEulerPolynomialsEvaluatedAt1(m)
        return [D[k,n-k].numerator() for n in range(m) for k in (0..n)]
    A227577_list(12)  # Peter Luschny, Jul 18 2013

Extensions

Corrected by Jean-François Alcover, Jul 17 2013

A191972 The numerators of T(n, n+1) with T(0, m) = A164555(m)/A027642(m) and T(n, m) = T(n-1, m+1) - T(n-1, m), n >= 1, m >= 0.

Original entry on oeis.org

1, -1, 1, -4, 4, -16, 3056, -1856, 181312, -35853056, 1670556928, -39832634368, 545273832448, -19385421824, 53026545299456, -2753673793480966144, 68423881271489019904, -22654998127210332160
Offset: 0

Views

Author

Paul Curtz, Jun 20 2011

Keywords

Comments

For the denominators of T(n, n+1) see A190339, where detailed information can be found.

Examples

			T(n,n+1) = [1/2, -1/6, 1/15 , -4/105, 4/105, -16/231, 3056/15015, -1856/2145, 181312/36465, ...]
		

Crossrefs

Programs

  • Maple
    nmax:=20: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0,m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n,m):=T(n-1,m+1)-T(n-1,m) od: od: for n from 0 to nmax do seq(T(n,m),m=0..mmax) od: seq(numer(T(n,n+1)),n=0..nmax-1); # Johannes W. Meijer, Jun 30 2011
  • Mathematica
    nmax = 17; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax+1}]; dd = Table[Differences[bb, n], {n, 1, nmax }]; a[0] = 1; a[n_] := dd[[n, n+2]] // Numerator; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 02 2012 *)

Formula

T(n, n+1) = T(n, n)/2.
a(n+2) = (-1)^n*A181130(n+2)/2.

Extensions

Thanks to R. J. Mathar by Paul Curtz, Jun 20 2011
Edited by Johannes W. Meijer, Jun 30 2011

A229023 Numerators of the main diagonal of A225825 difference table, a sequence linked to Bernoulli, Genocchi and Clausen numbers.

Original entry on oeis.org

1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272, -90228445612544, 19078660567134208, -2034677178643867648, 123160010212358914048, -19182197131374977024, 228111332170536254898176, -51166426240975948419354886144
Offset: 0

Views

Author

Keywords

Comments

a(n) is divisible by 2^n and congruent to 1, 2, 4, 5, 7 or 8 mod 9.

Examples

			1, -2/3, 16/15, -424/105, 2944/105, -70240/231, 70873856/15015, ...
		

Crossrefs

Cf. A181131 (denominators), A225825, A110501 (Genocchi numbers), A141056 (Clausen numbers), A212196 (Bernoulli medians), A005439 (Genocchi medians).

Programs

  • Mathematica
    nmax = 30; Clausen[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; t = Join[{1}, Table[Numerator[BernoulliB[n, 1/2] - (n + 1)*EulerE[n, 0]]/Clausen[n], {n, 1, nmax}]]; dt = Table[Differences[t, n], {n, 0, nmax}]; Diagonal[dt] // Numerator

A224964 Irregular triangle of the denominators of the unreduced fractions that lead to the second Bernoulli numbers.

Original entry on oeis.org

2, 2, 2, 6, 2, 6, 2, 6, 15, 2, 6, 15, 2, 6, 15, 105, 2, 6, 15, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 15015, 2, 6, 15, 105, 105, 231, 15015
Offset: 0

Views

Author

Paul Curtz, Apr 21 2013

Keywords

Comments

The triangle of fractions A192456(n)/A191302(n) leading to the second Bernoulli numbers written in A191302(n) is the reduced case. The unreduced case is
B(0) = 1 = 2/2 (1 or 2/2 chosen arbitrarily)
B(1) = 1/2
B(2) = 1/6 = 1/2 - 2/6
B(3) = 0 = 1/2 - 3/6
B(4) = -1/30 = 1/2 - 4/6 + 2/15
B(5) = 0 = 1/2 - 5/6 + 5/15
B(6) = 1/42 = 1/2 - 6/6 + 9/15 - 8/105
B(7) = 0 = 1/2 - 7/6 + 14/15 - 28/105
B(8) = -1/30 = 1/2 - 8/6 + 20/15 - 64/105 + 8/105.
The constant values along the columns of denominators are A190339(n).
With B(0)=1, B(2) = 1/2 -1/3, (reduced case), the last fraction of the B(2*n) is
1, -1/3, 2/15, -8/105, 8/105, ... = A212196(n)/A181131(n).
We can continue this method of sum of fractions yielding Bernoulli numbers.
Starting from 1/6 for B(2*n+2), we have:
B(2) = 1/6
B(4) = 1/6 - 3/15
B(6) = 1/6 - 5/15 + 20/105
B(8) = 1/6 - 7/15 + 56/105 - 28/105.
With the odd indices from 3, all these B(n) are the Bernoulli twin numbers -A051716(n+3)/A051717(n+3).

Examples

			Triangle begins
  2;
  2;
  2, 6;
  2, 6;
  2, 6, 15;
  2, 6, 15;
  2, 6, 15, 105;
  2, 6, 15, 105;
  2, 6, 15, 105, 105;
  2, 6, 15, 105, 105;
  2, 6, 15, 105, 105, 231;
  2, 6, 15, 105, 105, 231;
  2, 6, 15, 105, 105, 231, 15015;
  2, 6, 15, 105, 105, 231, 15015;
		

Crossrefs

Programs

  • Mathematica
    nmax = 7; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; A190339 = diff // Diagonal // Denominator; Table[ Table[ Take[ A190339, n], {2}], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Apr 25 2013 *)

Formula

T(n,k) = A190339(k).

A230069 Numerators of inverse of triangle A082985(n).

Original entry on oeis.org

1, -1, 1, 2, -1, 1, -8, 1, -2, 1, 8, -4, 11, -10, 1, -32, 8, -5, 29, -5, 1, 6112, -8, 26, -33, 7, -7, 1, -3712, 512, -112, 313, -100, 602, -28, 1, 362624, -2944, 1936, -1816, 593, -1268, 70, -4, 1, -71706112, 2432, -960, 31568, -1481, 9681, -566, 38, -15, 1
Offset: 0

Views

Author

Paul Curtz, Oct 08 2013

Keywords

Comments

First column of the example: A212196(n)/A181131(n), main diagonal of A164555(n)/A027642(n). See A190339(n). Hence a link between Chebyshev and Bernoulli numbers.
Mirror image of A201453.

Examples

			Numerators of
1,
-1/3,    1/3,
2/15,   -1/3,   1/5,
-8/105,  1/3,  -2/5,    1/7,
8/105,  -4/9, 11/15, -10/21,  1/9,
-32/231, 8/9,  -5/3,  29/21, -5/9, 1/11
		

Crossrefs

Cf. A201453(n)/A201454(n), A098435.

Programs

  • Mathematica
    rows = 10; u[n_, m_] /; m > n = 0; u[n_, m_] := Binomial[2*n - m, m]*(2*n + 1)/(2*n - 2*m + 1); t = Table[u[n, m], {n, 0, rows - 1}, {m, 0, rows - 1}] // Inverse; Table[t[[n, k]] // Numerator, {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 08 2013 *)

Formula

T(k,m) = numerator of F(k,m) = (1/(2*m-2*k+1)) * sum(i=0..2*k, binomial(m,2*k-i)*binomial(2*m-2*k+i,i) * Bernoulli(i)). - Ralf Stephan, Oct 10 2013

Extensions

More terms from Jean-François Alcover, Oct 08 2013

A254630 Ascending antidiagonal numerators of the table of repeated differences of A164558(n)/A027642(n).

Original entry on oeis.org

1, 1, 3, 1, 2, 13, 0, 1, 5, 3, -1, -1, 2, 29, 119, 0, -1, -1, 1, 31, 5, 1, 1, -1, -8, -1, 43, 253, 0, 1, 1, 4, -4, -1, 41, 7, -1, -1, -1, 4, 8, 4, -1, 29, 239, 0, -1, -1, -8, -4, 4, 8, 1, 31, 9, 5, 5, 7, -4, -116, -32, -116, -4, 7, 71, 665, 0
Offset: 0

Views

Author

Paul Curtz, Feb 03 2015

Keywords

Comments

The difference table of Bernoulli(n,2) or B(n,2) = A164558(n)/A027642(n) is defined by placing the fractions in the upper row and calculating further rows as the differences of their preceding row:
1, 3/2, 13/6, 3, 119/30, ...
1/2, 2/3, 5/6, 29/30, ...
1/6, 1/6, 2/15, ...
0, -1/30, ...
-1/30, ...
etc.
The first column is A164555(n)/A027642(n).
In particular, the sums of the antidiagonals
1 = 1
1/2 + 3/2 = 2
1/6 + 2/3 + 13/6 = 3
0 + 1/6 + 5/6 + 3 = 4
etc. are the positive natural numbers. (This is rewritten for Bernoulli(n,3) in A157809).
We also have for Bernoulli(.,2)
B(0,2) = 1
B(0,2) + 2*B(1,2) = 4
B(0,2) + 3*B(1,2) + 3*B(2,2) = 12
B(0,2) + 4*B(1,2) + 6*B(2,2) + 4*B(3,2) = 32
etc. with right hand sides provided by A001787.
More generally sum_{s=0..t-1} binomial(t,s)*Bernoulli(s,q) gives A027471(t) for q=3, A002697 for q=4 etc, by reading A104002 downwards the q-th column.

Crossrefs

Cf. A027641, A027642, A074909, A085737, A085738, A104002, A157809, A157920, A157930, A157945, A157946, A157965, A164555, A164558, A190339, A158302, A181131 (numerators and denominators of the main diagonal).

Programs

  • Mathematica
    nmax = 11; A164558 = Table[BernoulliB[n,2], {n, 0, nmax}]; D164558 = Table[ Differences[A164558, n], {n, 0, nmax}]; Table[ D164558[[n-k+1, k+1]] // Numerator, {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 04 2015 *)

A290696 Triangle read by rows, T(n, k) = [x^k](Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!* x^k)^2, for 0 <= k <= 2n.

Original entry on oeis.org

1, 0, 0, 1, 0, 0, 1, -4, 4, 0, 0, 1, -12, 48, -72, 36, 0, 0, 1, -28, 268, -1056, 1968, -1728, 576, 0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400, 0, 0, 1, -124, 4924, -70080, 488640, -1909440, 4466880, -6393600, 5486400, -2592000, 518400
Offset: 0

Views

Author

Peter Luschny, Aug 25 2017

Keywords

Comments

Without squaring the sum in the definition one gets for the polynomials:
Integral_{x=0..1} P(n, x) = Bernoulli(n, 1) = A164555(n)/A027642(n).

Examples

			Triangle starts:
[1]
[0, 0, 1]
[0, 0, 1,  -4,    4]
[0, 0, 1, -12,   48,   -72,    36]
[0, 0, 1, -28,  268, -1056,  1968,  -1728,   576]
[0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400]
The first few polynomials:
P_0(x) = 1
P_1(x) = x^2
P_2(x) = x^2 -  4*x^3 +   4*x^4
P_3(x) = x^2 - 12*x^3 +  48*x^4 -   72*x^5 +   36*x^6
P_4(x) = x^2 - 28*x^3 + 268*x^4 - 1056*x^5 + 1968*x^6 - 1728*x^7 + 576*x^8
		

Crossrefs

Programs

  • Maple
    P := (n, x) -> add((-1)^(n-k)*Stirling2(n,k)*k!*x^k, k=0..n)^2;
    for n from 0 to 6 do seq(coeff(P(n, x), x, k), k=0..2*n) od;

Formula

Integral_{x=0..1} P(n, x) = BernoulliMedian(n) = A212196(n)/A181131(n).
Previous Showing 11-20 of 20 results.