cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 129 results. Next

A353395 Numbers k such that the prime shadow of k equals the product of prime shadows of the prime indices of k.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 26, 31, 33, 41, 51, 55, 58, 59, 67, 78, 83, 85, 86, 93, 94, 109, 123, 126, 127, 130, 146, 148, 155, 157, 158, 165, 174, 177, 179, 187, 191, 196, 201, 202, 205, 211, 241, 244, 249, 255, 258, 274, 277, 278, 282, 283, 284, 286, 290, 295, 298
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
      1: {}         78: {1,2,6}      158: {1,22}
      3: {2}        83: {23}         165: {2,3,5}
      5: {3}        85: {3,7}        174: {1,2,10}
     11: {5}        86: {1,14}       177: {2,17}
     15: {2,3}      93: {2,11}       179: {41}
     17: {7}        94: {1,15}       187: {5,7}
     26: {1,6}     109: {29}         191: {43}
     31: {11}      123: {2,13}       196: {1,1,4,4}
     33: {2,5}     126: {1,2,2,4}    201: {2,19}
     41: {13}      127: {31}         202: {1,26}
     51: {2,7}     130: {1,3,6}      205: {3,13}
     55: {3,5}     146: {1,21}       211: {47}
     58: {1,10}    148: {1,1,12}     241: {53}
     59: {17}      155: {3,11}       244: {1,1,18}
     67: {19}      157: {37}         249: {2,23}
For example, 126 is in the sequence because its prime indices {1,2,2,4} have shadows {1,2,2,3}, with product 12, which is also the prime shadow of 126.
		

Crossrefs

The prime terms are A006450.
The LHS (prime shadow) is A181819, with an inverse A181821.
The RHS (product of shadows) is A353394, first appearances A353397.
This is a ranking of the partitions counted by A353396.
Another related comparison is A353399, counted by A353398.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A324850 lists numbers divisible by the product of their prime indices.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393, counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==red[#]&]

Formula

A181819(a(n)) = A353394(a(n)) = Product_i A181819(A112798(a(n),i)).

A382914 Numbers k such that it is not possible to permute a multiset whose multiplicities are the prime indices of k so that the run-lengths are all equal.

Original entry on oeis.org

10, 14, 22, 26, 28, 33, 34, 38, 39, 44, 46, 51, 52, 55, 57, 58, 62, 66, 68, 69, 74, 76, 78, 82, 85, 86, 87, 88, 92, 93, 94, 95, 102, 104, 106, 111, 114, 115, 116, 118, 119, 122, 123, 124, 129, 130, 134, 136, 138, 141, 142, 145, 146, 148, 152, 153, 155, 156
Offset: 1

Views

Author

Gus Wiseman, Apr 09 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The terms together with their prime indices begin:
  10: {1,3}
  14: {1,4}
  22: {1,5}
  26: {1,6}
  28: {1,1,4}
  33: {2,5}
  34: {1,7}
  38: {1,8}
  39: {2,6}
  44: {1,1,5}
  46: {1,9}
  51: {2,7}
  52: {1,1,6}
  55: {3,5}
  57: {2,8}
  58: {1,10}
  62: {1,11}
  66: {1,2,5}
		

Crossrefs

For anti-run permutations we have A335126, complement A335127.
Zeros of A382858, anti-run A335125.
For prime indices instead of signature we have A382879, counted by A382915.
For distinct run-lengths we have A382912 (zeros of A382773), complement A382913.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798.
A140690 lists numbers whose binary expansion has equal run-lengths, distinct A044813.
A304442 counts partitions with equal run-sums, ranks A353833.
A164707 lists numbers whose binary form has equal runs of ones, distinct A328592.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
Cf. A382857 (firsts A382878), A382771 (firsts A382772).

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Select[Permutations[nrmptn[#]],SameQ@@Length/@Split[#]&]=={}&]

A367685 Numbers divisible by their multiset multiplicity kernel.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 36, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 100, 101, 103, 104, 107
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2023

Keywords

Comments

First differs from A344586 in lacking 120.
We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.
First differs from A212165 at n=73: A212165(73)=120 is not a term of this. - Amiram Eldar, Dec 04 2023

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   11: {5}
   12: {1,1,2}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   18: {1,2,2}
   19: {8}
   20: {1,1,3}
   23: {9}
   24: {1,1,1,2}
		

Crossrefs

Includes all prime-powers A000961.
The only squarefree terms are the primes A008578.
Partitions of this type are counted by A367684.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives multiset of multiplicities (prime signature), sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A367579 lists MMK, ranks A367580, sum A367581, max A367583.

Programs

  • Mathematica
    mmk[n_Integer]:= Product[Min[#]^Length[#]&[First/@Select[FactorInteger[n], Last[#]==k&]], {k,Union[Last/@FactorInteger[n]]}];
    Select[Range[100], Divisible[#,mmk[#]]&]

A318371 Number of non-isomorphic strict set multipartitions (sets of sets) of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 0, 2, 0, 1, 0, 3, 1, 0, 0, 3, 0, 0, 0, 5, 0, 4, 0, 1, 0, 0, 0, 6, 0, 0, 4, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2018

Keywords

Examples

			Non-isomorphic representatives of the a(24) = 6 strict set multipartitions of {1,1,2,3,4}:
  {{1},{1,2,3,4}}
  {{1,2},{1,3,4}}
  {{1},{2},{1,3,4}}
  {{1},{1,2},{3,4}}
  {{2},{1,3},{1,4}}
  {{1},{2},{3},{1,4}}
		

Crossrefs

Formula

a(n) = A318370(A181821(n)).

A322454 Number of multiset partitions with no constant parts of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 1, 2, 1, 0, 2, 0, 1, 2, 4, 0, 4, 0, 3, 3, 1, 0, 7, 4, 1, 9, 4, 0, 7, 0, 11, 3, 1, 5, 15, 0, 1, 4, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			The a(30) = 7 multiset partitions:
    {{1,1,1,2,2,3}}
   {{1,2},{1,1,2,3}}
   {{1,3},{1,1,2,2}}
   {{2,3},{1,1,1,2}}
   {{1,1,2},{1,2,3}}
   {{1,1,3},{1,2,2}}
  {{1,2},{1,2},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Select[mps[nrmptn[n]],Min@@Length/@Union/@#>1&]],{n,20}]

A330727 Irregular triangle read by rows where T(n,k) is the number of balanced reduced multisystems of depth k whose degrees (atom multiplicities) are the prime indices of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 2, 1, 3, 1, 7, 7, 1, 5, 5, 1, 5, 9, 5, 1, 9, 11, 1, 9, 28, 36, 16, 1, 10, 24, 16, 1, 14, 38, 27, 1, 13, 18, 1, 13, 69, 160, 164, 61, 1, 24, 79, 62, 1, 20, 160, 580, 1022, 855, 272, 1, 19, 59, 45, 1, 27, 138, 232, 123, 1, 17, 77, 121, 61
Offset: 2

Views

Author

Gus Wiseman, Jan 04 2020

Keywords

Comments

A balanced reduced multisystem is either a finite multiset, or a multiset partition with at least two parts, not all of which are singletons, of a balanced reduced multisystem.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A multiset whose multiplicities are the prime indices of n (such as row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Triangle begins:
   {}
   1
   1
   1   1
   1   2
   1   3   2
   1   3
   1   7   7
   1   5   5
   1   5   9   5
   1   9  11
   1   9  28  36  16
   1  10  24  16
   1  14  38  27
   1  13  18
   1  13  69 160 164  61
   1  24  79  62
For example, row n = 12 counts the following multisystems:
  {1,1,2,3}  {{1},{1,2,3}}    {{{1}},{{1},{2,3}}}
             {{1,1},{2,3}}    {{{1,1}},{{2},{3}}}
             {{1,2},{1,3}}    {{{1}},{{2},{1,3}}}
             {{2},{1,1,3}}    {{{1,2}},{{1},{3}}}
             {{3},{1,1,2}}    {{{1}},{{3},{1,2}}}
             {{1},{1},{2,3}}  {{{1,3}},{{1},{2}}}
             {{1},{2},{1,3}}  {{{2}},{{1},{1,3}}}
             {{1},{3},{1,2}}  {{{2}},{{3},{1,1}}}
             {{2},{3},{1,1}}  {{{2,3}},{{1},{1}}}
                              {{{3}},{{1},{1,2}}}
                              {{{3}},{{2},{1,1}}}
		

Crossrefs

Row sums are A318846.
Final terms in each row are A330728.
Row prime(n) is row n of A330784.
Row 2^n is row n of A008826.
Row n is row A181821(n) of A330667.
Column k = 3 is A318284(n) - 2 for n > 2.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[Reverse[FactorInteger[n]],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    totm[m_]:=Prepend[Join@@Table[totm[p],{p,Select[mps[m],1
    				

Formula

T(2^n,k) = A008826(n,k).

A330993 Numbers k such that a multiset whose multiplicities are the prime indices of k has a prime number of multiset partitions.

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 21, 22, 25, 33, 38, 41, 45, 46, 49, 50, 55, 57, 58, 63
Offset: 1

Views

Author

Gus Wiseman, Jan 07 2020

Keywords

Comments

This multiset (row k of A305936) is generally not the same as the multiset of prime indices of k. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
Also numbers whose inverse prime shadow has a prime number of factorizations. A prime index of k is a number m such that prime(m) divides k. The multiset of prime indices of k is row k of A112798. The inverse prime shadow of k is the least number whose prime exponents are the prime indices of k.

Examples

			The multiset partitions for n = 1..6:
  {11}    {12}    {111}      {1111}        {123}      {1112}
  {1}{1}  {1}{2}  {1}{11}    {1}{111}      {1}{23}    {1}{112}
                  {1}{1}{1}  {11}{11}      {2}{13}    {11}{12}
                             {1}{1}{11}    {3}{12}    {2}{111}
                             {1}{1}{1}{1}  {1}{2}{3}  {1}{1}{12}
                                                      {1}{2}{11}
                                                      {1}{1}{1}{2}
The factorizations for n = 1..8:
  4    6    8      16       30     24       32         60
  2*2  2*3  2*4    2*8      5*6    3*8      4*8        2*30
            2*2*2  4*4      2*15   4*6      2*16       3*20
                   2*2*4    3*10   2*12     2*2*8      4*15
                   2*2*2*2  2*3*5  2*2*6    2*4*4      5*12
                                   2*3*4    2*2*2*4    6*10
                                   2*2*2*3  2*2*2*2*2  2*5*6
                                                       3*4*5
                                                       2*2*15
                                                       2*3*10
                                                       2*2*3*5
		

Crossrefs

The same for powers of 2 (instead of primes) is A330990.
Factorizations are A001055, with image A045782, with complement A330976.
Numbers whose number of integer partitions is prime are A046063.
Numbers whose number of strict integer partitions is prime are A035359.
Numbers whose number of set partitions is prime are A051130.
Numbers whose number of factorizations is a power of 2 are A330977.
The least number with prime(n) factorizations is A330992(n).
Factorizations of a number's inverse prime shadow are A318284.
Numbers with a prime number of factorizations are A330991.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    unsh[n_]:=Times@@MapIndexed[Prime[#2[[1]]]^#1&,Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[30],PrimeQ[Length[facs[unsh[#]]]]&]

Formula

A001055(A181821(a(n))) belongs to A000040.

A339842 Heinz numbers of non-graphical, multigraphical integer partitions of even numbers.

Original entry on oeis.org

9, 25, 30, 49, 63, 70, 75, 84, 100, 121, 147, 154, 165, 169, 175, 189, 196, 198, 210, 220, 250, 264, 273, 280, 286, 289, 325, 343, 351, 361, 363, 364, 385, 390, 441, 442, 462, 468, 484, 490, 495, 507, 520, 525, 529, 550, 561, 588, 594, 595, 616, 624, 637, 646
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2020

Keywords

Comments

An integer partition is graphical if it comprises the multiset of vertex-degrees of some graph, and multigraphical if it comprises the multiset of vertex-degrees of some multigraph.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
      9: {2,2}        189: {2,2,2,4}      363: {2,5,5}
     25: {3,3}        196: {1,1,4,4}      364: {1,1,4,6}
     30: {1,2,3}      198: {1,2,2,5}      385: {3,4,5}
     49: {4,4}        210: {1,2,3,4}      390: {1,2,3,6}
     63: {2,2,4}      220: {1,1,3,5}      441: {2,2,4,4}
     70: {1,3,4}      250: {1,3,3,3}      442: {1,6,7}
     75: {2,3,3}      264: {1,1,1,2,5}    462: {1,2,4,5}
     84: {1,1,2,4}    273: {2,4,6}        468: {1,1,2,2,6}
    100: {1,1,3,3}    280: {1,1,1,3,4}    484: {1,1,5,5}
    121: {5,5}        286: {1,5,6}        490: {1,3,4,4}
    147: {2,4,4}      289: {7,7}          495: {2,2,3,5}
    154: {1,4,5}      325: {3,3,6}        507: {2,6,6}
    165: {2,3,5}      343: {4,4,4}        520: {1,1,1,3,6}
    169: {6,6}        351: {2,2,2,6}      525: {2,3,3,4}
    175: {3,3,4}      361: {8,8}          529: {9,9}
For example, a complete list of all multigraphs with degrees (4,2,2,2) is:
  {{1,2},{1,2},{1,3},{1,4},{3,4}}
  {{1,2},{1,3},{1,3},{1,4},{2,4}}
  {{1,2},{1,3},{1,4},{1,4},{2,3}}
Since none of these is strict, i.e., a graph, the Heinz number 189 is in the sequence.
		

Crossrefs

See link for additional cross references.
Distinct prime shadows (images under A181819) of A340017.
A000070 counts non-multigraphical partitions (A339620).
A000569 counts graphical partitions (A320922).
A027187 counts partitions of even length (A028260).
A058696 counts partitions of even numbers (A300061).
A096373 cannot be partitioned into strict pairs.
A209816 counts multigraphical partitions (A320924).
A320663/A339888 count unlabeled multiset partitions into singletons/pairs.
A320893 can be partitioned into distinct pairs but not into strict pairs.
A339560 can be partitioned into distinct strict pairs.
A339617 counts non-graphical partitions of 2n (A339618).
A339659 counts graphical partitions of 2n into k parts.

Programs

  • Mathematica
    strr[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[strr[n/d],Min@@#>=d&]],{d,Select[Divisors[n],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],EvenQ[Length[nrmptn[#]]]&& Select[strr[Times@@Prime/@nrmptn[#]],UnsameQ@@#&]=={}&&strr[Times@@Prime/@nrmptn[#]]!={}&]

Formula

Equals A320924 /\ A339618.
Equals A320924 \ A320922.

A367683 Numbers whose sorted prime signature is the same as the multiset multiplicity kernel of their prime indices.

Original entry on oeis.org

1, 2, 6, 9, 10, 12, 14, 18, 22, 26, 30, 34, 38, 40, 42, 46, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 102, 106, 110, 112, 114, 118, 122, 125, 126, 130, 134, 138, 142, 146, 154, 158, 166, 170, 174, 178, 182, 186, 190, 194, 198, 202, 206, 210, 214, 218, 222, 225
Offset: 1

Views

Author

Gus Wiseman, Nov 30 2023

Keywords

Comments

We define the multiset multiplicity kernel (MMK) of a positive integer n to be the product of (least prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n. For example, 90 has prime factorization 2^1 * 3^2 * 5^1, so for k = 1 we have 2^2, and for k = 2 we have 3^1, so MMK(90) = 12. As an operation on multisets MMK is represented by A367579, and as an operation on their ranks it is represented by A367580.

Examples

			The terms together with their prime indices begin:
    1: {}
    2: {1}
    6: {1,2}
    9: {2,2}
   10: {1,3}
   12: {1,1,2}
   14: {1,4}
   18: {1,2,2}
   22: {1,5}
   26: {1,6}
   30: {1,2,3}
   34: {1,7}
   38: {1,8}
   40: {1,1,1,3}
   42: {1,2,4}
   46: {1,9}
   58: {1,10}
   62: {1,11}
   66: {1,2,5}
   70: {1,3,4}
		

Crossrefs

Squarefree terms are A039956.
The LHS is A118914, unsorted A124010.
Prime-power terms are A307539.
The RHS is A367579, ranks A367580, sum A367581, max A367583.
Partitions of this type are counted by A367682.
A007947 gives squarefree kernel.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, reversed A353742.
A304038 lists distinct prime indices, length A001221, sum A066328.
A367582 counts partitions by sum of multiset multiplicity kernel.

Programs

  • Mathematica
    mmk[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Select[Range[100], #==1||Sort[Last/@FactorInteger[#]] == mmk[PrimePi/@Join@@ConstantArray@@@FactorInteger[#]]&]

A318847 Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts.

Examples

			The a(6) = 6 tree-partitions of {1,1,2}:
  (112)
  ((1)(12))
  ((2)(11))
  ((1)(1)(2))
  ((1)((1)(2)))
  ((2)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[allmsptrees[nrmptn[n]]],{n,20}]

Formula

a(n) = A281118(A181821(n)).
a(prime(n)) = A289501(n).
a(2^n) = A005804(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020
Previous Showing 91-100 of 129 results. Next