cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A304710 Number of partitions of 2n whose Ferrers-Young diagram cannot be tiled with dominoes.

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 12, 25, 46, 85, 146, 250, 410, 666, 1053, 1648, 2527, 3840, 5747, 8525, 12496, 18172, 26165, 37408, 53038, 74714, 104502, 145315, 200808, 276030, 377339, 513342, 694925, 936590, 1256670, 1679310, 2234994, 2963430, 3914701, 5153434, 6760937
Offset: 0

Views

Author

Alois P. Heinz, May 17 2018

Keywords

Comments

Also the number of partitions of 2n where the number of odd parts in even positions differs from the number of odd parts in odd positions.

Examples

			a(3) = 1: the Ferrers-Young diagram of 321 cannot be tiled with dominoes because the numbers of white and black squares (when colored like a chessboard) are different but each domino covers exactly one white and one black square:
   ._____.
   |_|X|_|
   |X|_|
   |_|
.
a(4) = 2: 32111, 521.
a(5) = 6: 3211111, 32221, 4321, 52111, 541, 721.
a(6) = 12: 321111111, 3222111, 33321, 432111, 5211111, 52221, 54111, 543, 6321, 72111, 741, 921.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, p, c) option remember; `if`(n=0, `if`(c=0, 0, 1),
          `if`(i<1, 0, b(n, i-1, p, c)+b(n-i, min(n-i, i), -p, c+
          `if`(i::odd, p, 0))))
        end:
    a:= n-> b(2*n$2, 1, 0):
    seq(a(n), n=0..50);
    # second Maple program:
    a:= n-> (p-> p(2*n)-add(p(j)*p(n-j), j=0..n))(combinat[numbpart]):
    seq(a(n), n=0..50);
    # third Maple program:
    b:= proc(n, k) option remember; `if`(n=0, 1, add(
          numtheory[sigma](j)*b(n-j, k), j=1..n)*k/n)
        end:
    a:= n-> b(2*n, 1)-b(n, 2):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_, p_, c_] := b[n, i, p, c] = If[n == 0, If[c == 0, 0, 1], If[i < 1, 0, b[n, i - 1, p, c] + b[n - i, Min[n - i, i], -p, c + If[OddQ[i], p, 0]]]];
    a[n_] := b[2n, 2n, 1, 0];
    Table[a[n], {n, 0, 50}]
    (* second program: *)
    a[n_] := PartitionsP[2n] - Sum[PartitionsP[j]* PartitionsP[n - j], {j, 0, n}];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 13 2023, after Alois P. Heinz *)

Formula

a(n) = A058696(n) - A000712(n) = A000041(2*n) - A000712(n).
a(n) = A144064(2*n,1) - A144064(n,2).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8*sqrt(3)*n) * (1 - 2/(3^(1/4)*n^(1/4)) - (sqrt(3)/(2*Pi) + Pi/(48*sqrt(3))) / sqrt(n) + (Pi/(6*3^(3/4)) + 15*3^(1/4)/(8*Pi)) / n^(3/4)). - Vaclav Kotesovec, May 25 2018

A365825 Number of integer partitions of n that are not of length 2 and do not contain n/2.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 6, 12, 14, 26, 31, 51, 61, 95, 114, 169, 202, 289, 347, 481, 576, 782, 936, 1244, 1487, 1946, 2323, 2997, 3570, 4551, 5414, 6827, 8103, 10127, 11997, 14866, 17575, 21619, 25507, 31166, 36692, 44563, 52362, 63240, 74152, 89112, 104281, 124731
Offset: 0

Views

Author

Gus Wiseman, Sep 19 2023

Keywords

Comments

Also the number of integer partitions of n with no two possibly equal parts summing to n.

Examples

			The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)  (3)    (4)     (5)      (6)       (7)        (8)
            (111)  (1111)  (221)    (222)     (322)      (332)
                           (311)    (411)     (331)      (521)
                           (2111)   (2211)    (421)      (611)
                           (11111)  (21111)   (511)      (2222)
                                    (111111)  (2221)     (3221)
                                              (3211)     (3311)
                                              (4111)     (5111)
                                              (22111)    (22211)
                                              (31111)    (32111)
                                              (211111)   (221111)
                                              (1111111)  (311111)
                                                         (2111111)
                                                         (11111111)
		

Crossrefs

First condition alone is A058984, complement A004526, ranks A100959.
Second condition alone is A086543, complement A035363, ranks !A344415.
The complement is counted by A238628.
The strict case is A365826, complement A365659.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A140106 counts strict partitions of length 2, complement A365827.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]!=2&&FreeQ[#,n/2]&]],{n,0,15}]
  • Python
    from sympy import npartitions
    def A365825(n): return npartitions(n)-(m:=n>>1)-(0 if n&1 else npartitions(m)-1) # Chai Wah Wu, Sep 23 2023

Formula

Heinz numbers are A100959 /\ !A344415.
a(n) = A000041(n)-(n-1)/2 if n is odd. a(n) = A000041(n)-n/2-A000041(n/2)+1 if n is even. - Chai Wah Wu, Sep 23 2023

Extensions

a(31)-a(47) from Chai Wah Wu, Sep 23 2023

A365827 Number of strict integer partitions of n whose length is not 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 7, 10, 12, 16, 20, 25, 30, 38, 45, 55, 66, 79, 93, 111, 130, 153, 179, 209, 242, 282, 325, 375, 432, 496, 568, 651, 742, 846, 963, 1094, 1240, 1406, 1589, 1795, 2026, 2282, 2567, 2887, 3240, 3634, 4072, 4557, 5094, 5692, 6351
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Comments

Also the number of strict integer partitions of n with no pair of distinct parts summing to n.

Examples

			The a(5) = 1 through a(13) = 12 strict partitions (A..D = 10..13):
  (5)  (6)    (7)    (8)    (9)    (A)     (B)     (C)     (D)
       (321)  (421)  (431)  (432)  (532)   (542)   (543)   (643)
                     (521)  (531)  (541)   (632)   (642)   (652)
                            (621)  (631)   (641)   (651)   (742)
                                   (721)   (731)   (732)   (751)
                                   (4321)  (821)   (741)   (832)
                                           (5321)  (831)   (841)
                                                   (921)   (931)
                                                   (5421)  (A21)
                                                   (6321)  (5431)
                                                           (6421)
                                                           (7321)
		

Crossrefs

The complement is counted by A140106 shifted left.
Heinz numbers are A005117 \ A006881 = A005117 /\ A100959.
The non-strict version is A058984, complement A004526.
The case not containing n/2 is A365826, non-strict A365825.
A000041 counts integer partitions, strict A000009.
A046663 counts partitions with no submultiset summing to k, strict A365663.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Length[#]!=2&]],{n,0,30}]

Formula

a(n) = A000009(n) - A004526(n-1) for n > 0.

A366321 Numbers m whose prime indices have even sum k such that k/2 is not a prime index of m.

Original entry on oeis.org

1, 3, 7, 10, 13, 16, 19, 21, 22, 27, 28, 29, 34, 36, 37, 39, 43, 46, 48, 52, 53, 55, 57, 61, 62, 64, 66, 71, 75, 76, 79, 81, 82, 85, 87, 88, 89, 90, 91, 94, 100, 101, 102, 107, 108, 111, 113, 115, 116, 117, 118, 120, 129, 130, 131, 133, 134, 136, 138, 139, 144
Offset: 0

Views

Author

Gus Wiseman, Oct 13 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 84 are y = {1,1,2,4}, with even sum 8; but 8/2 = 4 is in y, so 84 is not in the sequence.
The terms together with their prime indices begin:
    1: {}
    3: {2}
    7: {4}
   10: {1,3}
   13: {6}
   16: {1,1,1,1}
   19: {8}
   21: {2,4}
   22: {1,5}
   27: {2,2,2}
   28: {1,1,4}
   29: {10}
   34: {1,7}
   36: {1,1,2,2}
		

Crossrefs

Partitions of this type are counted by A182616, strict A365828.
A066207 lists numbers with all even prime indices, odd A066208.
A086543 lists numbers with at least one odd prime index, counted by A366322.
A300063 ranks partitions of odd numbers.
A366319 ranks partitions of n not containing n/2.
A366321 ranks partitions of 2k that do not contain k.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&FreeQ[prix[#],Total[prix[#]]/2]&]

A366530 Heinz numbers of integer partitions of even numbers with at least one odd part.

Original entry on oeis.org

4, 10, 12, 16, 22, 25, 28, 30, 34, 36, 40, 46, 48, 52, 55, 62, 64, 66, 70, 75, 76, 82, 84, 85, 88, 90, 94, 100, 102, 108, 112, 115, 116, 118, 120, 121, 130, 134, 136, 138, 144, 146, 148, 154, 155, 156, 160, 165, 166, 172, 175, 184, 186, 187, 190, 192, 194, 196
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices are the following. Each multiset has even sum and at least one odd part.
    4: {1,1}
   10: {1,3}
   12: {1,1,2}
   16: {1,1,1,1}
   22: {1,5}
   25: {3,3}
   28: {1,1,4}
   30: {1,2,3}
   34: {1,7}
   36: {1,1,2,2}
   40: {1,1,1,3}
   46: {1,9}
   48: {1,1,1,1,2}
   52: {1,1,6}
   55: {3,5}
   62: {1,11}
   64: {1,1,1,1,1,1}
		

Crossrefs

These partitions are counted by A182616, even bisection of A086543.
Not requiring at least one odd part gives A300061.
Allowing partitions of odd numbers gives A366322.
A031368 lists primes of odd index.
A066207 ranks partitions with all even parts, counted by A035363.
A066208 ranks partitions with all odd parts, counted by A000009.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100], EvenQ[Total[prix[#]]]&&Or@@OddQ/@prix[#]&]

A365826 Number of strict integer partitions of n that are not of length 2 and do not contain n/2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 20, 20, 30, 31, 45, 46, 66, 68, 93, 97, 130, 136, 179, 188, 242, 256, 325, 344, 432, 459, 568, 606, 742, 793, 963, 1031, 1240, 1331, 1589, 1707, 2026, 2179, 2567, 2766, 3240, 3493, 4072, 4393, 5094, 5501, 6351
Offset: 0

Views

Author

Gus Wiseman, Sep 20 2023

Keywords

Comments

Also the number of strict integer partitions of n without two parts (allowing parts to be re-used) summing to n.

Examples

			The a(6) = 1 through a(12) = 7 strict partitions:
  (6)  (7)      (8)      (9)      (10)       (11)       (12)
       (4,2,1)  (5,2,1)  (4,3,2)  (6,3,1)    (5,4,2)    (5,4,3)
                         (5,3,1)  (7,2,1)    (6,3,2)    (7,3,2)
                         (6,2,1)  (4,3,2,1)  (6,4,1)    (7,4,1)
                                             (7,3,1)    (8,3,1)
                                             (8,2,1)    (9,2,1)
                                             (5,3,2,1)  (5,4,2,1)
		

Crossrefs

The second condition alone has bisections A078408 and A365828.
The complement is counted by A365659.
The non-strict version is A365825, complement A238628.
The first condition alone is A365827, complement A140106.
A000041 counts integer partitions, strict A000009.
A182616 counts partitions of 2n that do not contain n, strict A365828.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Tuples[#,2],n]&]], {n,0,30}]

A366527 Number of integer partitions of 2n containing at least one even part.

Original entry on oeis.org

0, 1, 3, 7, 16, 32, 62, 113, 199, 339, 563, 913, 1453, 2271, 3496, 5308, 7959, 11798, 17309, 25151, 36225, 51748, 73359, 103254, 144363, 200568, 277007, 380437, 519715, 706412, 955587, 1286762, 1725186, 2303388, 3063159, 4058041, 5356431, 7045454, 9235841
Offset: 0

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

Also partitions of 2n with even product.

Examples

			The a(1) = 1 through a(4) = 16 partitions:
  (2)  (4)    (6)      (8)
       (22)   (42)     (44)
       (211)  (222)    (62)
              (321)    (332)
              (411)    (422)
              (2211)   (431)
              (21111)  (521)
                       (611)
                       (2222)
                       (3221)
                       (4211)
                       (22211)
                       (32111)
                       (41111)
                       (221111)
                       (2111111)
		

Crossrefs

This is the even bisection of A047967.
For odd instead of even parts we have A182616, ranks A366321 or A366528.
These partitions have ranks A366529, subset of A324929.
A000041 counts integer partitions, strict A000009.
A006477 counts partitions w/ at least one odd and even part, ranks A366532.
A086543 counts partitions of n not containing n/2, ranks A366319.
A086543 counts partitions w/o odds, ranks A366322, even bisection A182616.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[2n],Or@@EvenQ/@#&]],{n,0,15}]

Formula

a(n) = A000041(2n) - A000009(2n).

A366532 Heinz numbers of integer partitions with at least one even and odd part.

Original entry on oeis.org

6, 12, 14, 15, 18, 24, 26, 28, 30, 33, 35, 36, 38, 42, 45, 48, 51, 52, 54, 56, 58, 60, 65, 66, 69, 70, 72, 74, 75, 76, 77, 78, 84, 86, 90, 93, 95, 96, 98, 99, 102, 104, 105, 106, 108, 112, 114, 116, 119, 120, 122, 123, 126, 130, 132, 135, 138, 140, 141, 142
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

These partitions are counted by A006477.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
    6: {1,2}
   12: {1,1,2}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   33: {2,5}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   42: {1,2,4}
   45: {2,2,3}
   48: {1,1,1,1,2}
		

Crossrefs

These partitions are counted by A006477.
Just even: A324929, counted by A047967.
Just odd: A366322, counted by A086543 (even bisection of A182616).
A031368 lists primes of odd index, even A031215.
A066207 ranks partitions with all even parts, counted by A035363.
A066208 ranks partitions with all odd parts, counted by A000009.
A112798 lists prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.
A257992 counts even prime indices, distinct A324967.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Or@@EvenQ/@prix[#]&&Or@@OddQ/@prix[#]&]

Formula

Intersection of A324929 and A366322.
Previous Showing 11-18 of 18 results.