A182707
Sum of the parts of all partitions of n-1 plus the sum of the emergent parts of the partitions of n.
Original entry on oeis.org
0, 1, 4, 11, 23, 46, 80, 138, 221, 351, 529, 801, 1161, 1685, 2380, 3355, 4624, 6375, 8623, 11658, 15538, 20664, 27163, 35660, 46330, 60082, 77288, 99197, 126418, 160802, 203246, 256381, 321700, 402781, 501962, 624332, 773235, 955776, 1177076, 1446762, 1772308
Offset: 1
For n = 6 the partitions of 6-1=5 are (5);(3+2);(4+1);(2+2+1);(3+1+1);(2+1+1+1);(1+1+1+1+1) and the sum of the parts give 35, the same as 5*7. By other hand the emergent parts of the partitions of 6 are (2+2);(4);(3) and the sum give 11, so a(6) = 35+11 = 46.
A076276
Number of + signs needed to write the partitions of n (A000041) as sums.
Original entry on oeis.org
0, 0, 1, 3, 7, 13, 24, 39, 64, 98, 150, 219, 322, 455, 645, 892, 1232, 1668, 2259, 3008, 4003, 5260, 6897, 8951, 11599, 14893, 19086, 24284, 30827, 38888, 48959, 61293, 76578, 95223, 118152, 145993, 180037, 221175, 271186, 331402, 404208, 491521
Offset: 0
4=1+3=2+2=1+1+2=1+1+1+1, 7 + signs are needed, so a(4)=7.
-
a[0]=0; a[n_] := Sum[DivisorSigma[0, k]PartitionsP[n-k], {k, 1, n}]-PartitionsP[n]
A196025
Total sum of parts greater than 1 in all the partitions of n except one copy of the smallest part greater than 1 of every partition.
Original entry on oeis.org
0, 0, 0, 2, 5, 16, 30, 63, 108, 189, 298, 483, 720, 1092, 1582, 2297, 3225, 4551, 6244, 8592, 11590, 15622, 20741, 27536, 36066, 47198, 61150, 79077, 101391, 129808, 164934, 209213, 263745, 331807, 415229, 518656, 644719, 799926, 988432, 1218979
Offset: 1
Cf.
A026905,
A046746,
A066186,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196039,
A196930,
A196931,
A198381.
A196930
Triangle read by rows in which row n lists in nondecreasing order the smallest part of every partition of n that do not contain 1 as a part, with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 2, 4, 2, 5, 2, 2, 3, 6, 2, 2, 3, 7, 2, 2, 2, 2, 3, 4, 8, 2, 2, 2, 2, 3, 3, 4, 9, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 5, 10, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 4, 5, 11, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 5, 6, 13
Offset: 1
Written as a triangle:
1,
2,
3,
2,4,
2,5,
2,2,3,6
2,2,3,7,
2,2,2,2,3,4,8,
2,2,2,2,3,3,4,9,
2,2,2,2,2,2,2,3,3,4,5,10,
2,2,2,2,2,2,2,2,3,3,3,4,5,11,
2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,4,4,5,6,12,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,4,4,5,6,13,
...
Row n has length A002865(n), n >= 2. The sum of row n is A182708(n), n >= 2. The number of 2's in row n is A002865(n-2), n >= 4. Right border of triangle gives A000027.
-
p:= (f, g)-> zip((x, y)->x+y, f, g, 0):
b:= proc(n, i) option remember; local g, j, r;
if n=0 then [1] elif i<2 then [0]
else r:= b(n, i-1);
for j to n/i do g:= b(n-i*j, i-1);
r:= p(p(r, [0$i, g[1]]), subsop(1=0, g));
od; r
fi
end:
T:= proc(n) local l; l:= b(n$2);
`if`(n=1, 1, seq(i$l[i+1], i=2..nops(l)-1))
end:
seq(T(n), n=1..16); # Alois P. Heinz, May 30 2013
-
p[f_, g_] := Plus @@ PadRight[{f, g}]; b[n_, i_] := b[n, i] = Module[{ g, j, r}, Which[n == 0, {1}, i<2, {0}, True, r = b[n, i-1]; For[j = 1, j <= n/i, j++, g = b[n-i*j, i-1]; r = p[p[r, Append[Array[0&, i], g // First]], ReplacePart[g, 1 -> 0]]]; r]]; T[n_] := Module[{l}, l = b[n, n]; If[n == 1, {1}, Table[Array[i&, l[[i+1]]], {i, 2, Length[l]-1}] // Flatten]]; Table[T[n], {n, 1, 16}] // Flatten (* Jean-François Alcover, Jan 30 2014, after Alois P. Heinz *)
A198381
Total number of parts greater than 1 in all partitions of n minus the number of partitions of n into parts each less than n.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 6, 10, 20, 32, 54, 81, 128, 184, 273, 385, 549, 754, 1048, 1412, 1917, 2547, 3392, 4444, 5837, 7556, 9791, 12553, 16086, 20429, 25935, 32665, 41108, 51404, 64190, 79721, 98882, 122043, 150417, 184618, 226239
Offset: 0
Cf.
A000041,
A000065,
A000070,
A006128,
A026905,
A093694,
A096541,
A135010,
A138121,
A182699,
A182707,
A182709,
A183152,
A193827,
A196930,
A196931.
A220479
Total number of smallest parts that are also emergent parts in all partitions of n.
Original entry on oeis.org
0, 0, 0, 1, 0, 3, 1, 5, 5, 10, 8, 22, 19, 33, 40, 62, 67, 107, 118, 175, 208, 282, 331, 462, 542, 712, 859, 1112, 1323, 1709, 2030, 2568, 3078, 3830, 4577, 5687, 6760, 8291, 9885, 12045, 14290, 17334, 20515, 24710, 29242, 35004, 41282, 49283, 57963, 68836
Offset: 1
Cf.
A000041,
A000070,
A002865,
A006128,
A092269,
A120452,
A182699,
A182709,
A195820,
A206437,
A215513.
-
b[n_, i_] := b[n, i] = If[n==0 || i==1, n, {q, r} = QuotientRemainder[n, i]; If[r==0, q, 0] + Sum[b[n-i*j, i-1], {j, 0, n/i}]];
c[n_] := b[n, n];
d[n_] := Total[PartitionsP[Range[0, n-3]]] + PartitionsP[n-1];
a[n_] := c[n] - d[n+1];
Array[a, 50] (* Jean-François Alcover, Jun 05 2021, using Alois P. Heinz's code for A092269 *)
A210942
Triangle read by rows in which row n lists the parts > 1 of the n-th region of the shell model of partitions, with a(1) = 1.
Original entry on oeis.org
1, 2, 3, 2, 4, 2, 3, 5, 2, 2, 4, 2, 3, 6, 3, 2, 2, 3, 5, 2, 4, 7, 3, 2, 2, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 3, 5, 2, 4, 7, 3, 2, 2, 3, 6, 3, 5, 9, 4, 3, 3, 2, 2, 2, 2, 2, 4, 2, 3, 6, 3, 2, 2, 5, 4, 8, 4, 3, 2, 2, 2, 2, 4, 7, 3, 6, 5, 10, 5
Offset: 1
Written as a triangle begins:
1;
2;
3;
2;
4,2;
3;
5,2,
2;
4,2;
3;
6,3,2,2;
3;
5,2;
4;
7,3,2,2;
Cf.
A135010,
A138121,
A182699,
A182709,
A183152,
A186114,
A187219,
A194436-
A194439,
A194447-
A194448,
A196025,
A198381,
A206437,
A210941.
A228109
Height after n-th step of an infinite staircase which is the lower part of a structure whose upper part is the infinite Dyck path of A228110.
Original entry on oeis.org
0, -1, 0, -1, 0, -1, 0, -1, 0, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, 1, 2, 1, 2, 3, 4, 3, 4, 3, 2, 1, 0, -1, 0, -1, 0, 1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 6, 5, 6, 5, 4, 5, 4, 3, 2, 1, 0, -1
Offset: 0
Illustration of initial terms (n = 1..53):
5
4 /
3 /\/\ /
2 / \ /\/
1 /\/\ /\/ \ /\/
0 /\ /\/ \ / \ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
-2
The diagram shows the Dyck pack mentioned in A228110 together with the staircase illustrated above. The area of the n-th region is equal to A186412(n).
.
7...................................
. /\
5..................... / \ /\
. /\ / \ /\ / /
3........... / \ / /\/\ \ / \/ /
2...... /\ / \ /\/ / \ \ / /\/
1... /\ / \ /\/ /\/\ \ / /\/ \ \ /\/ /\/
0 /\/ \/ /\ \/ /\/ \ \/ / \ \/ /\/
-1 \/\/\/\/ \/\/ \/\/ \/\/
.
Region:
. 1 2 3 4 5 6 7 8 9 10
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A228110,
A229946.
A228110
Height after n-th step of the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, n >= 0, k >= 1.
Original entry on oeis.org
0, 1, 0, 1, 2, 1, 0, 1, 2, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 1, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 6, 7, 8, 9, 10, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 2, 3, 4, 5, 6, 7, 6, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 14, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
Offset: 0
Illustration of initial terms (n = 1..59):
.
11 ...........................................................
. /
. /
. /
7 .................................. /
. /\ /
5 .................... / \ /\/
. /\ / \ /\ /
3 .......... / \ / \ / \/
2 ..... /\ / \ /\/ \ /
1 .. /\ / \ /\/ \ / \ /\/
. /\/ \/ \/ \/ \/
.
Note that the j-th largest peak between two valleys at height 0 is also the partition number A000041(j).
Written as an irregular triangle in which row k has length 2*A138137(k), the sequence begins:
0,1;
0,1,2,1;
0,1,2,3,2,1;
0,1,2,1,2,3,4,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,4,3,2,1;
0,1,2,1,2,3,4,5,4,3,4,5,6,5,6,7,8,9,10,11,10,9,8,7,6,5,4,3,2,1;
0,1,2,3,2,3,4,5,6,7,6,5,6,7,8,9,8,9,10,11,12,13,14,15,14,13,12,11,10,9,8,7,6,5,4,3,2,1;
...
Column 1 is
A000004. Both column 2 and the right border are in
A000012. Both columns 3 and 5 are in
A007395.
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A229946.
A233968
Number of steps between two valleys at height 0 in the infinite Dyck path in which the k-th ascending line segment has A141285(k) steps and the k-th descending line segment has A194446(k) steps, k >= 1.
Original entry on oeis.org
2, 4, 6, 12, 16, 30, 38, 64, 84, 128, 166, 248, 314, 448, 576, 790, 1004, 1358, 1708, 2264, 2844, 3694, 4614, 5936, 7354, 9342, 11544, 14502, 17816, 22220, 27144, 33584, 40878, 50192, 60828, 74276, 89596, 108778, 130772, 157918, 189116, 227374
Offset: 1
Illustration of initial terms as a dissection of a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
. _ _ _ _ _ _
. _ _ _ |
. _ _ _|_ |
. _ _ | |
. _ _ _ _ _ | | |
. _ _ _ | |
. _ _ _ _ | | |
. _ _ | | |
. _ _ _ | | | |
. _ _ | | | |
. _ | | | | |
. | | | | | |
.
. 2 4 6 12 16 30
.
Also using the elements from the above diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n).
7..................................
. /\
5.................... / \ /\
. /\ / \ /\ /
3.......... / \ / \ / \/
2..... /\ / \ /\/ \ /
1.. /\ / \ /\/ \ / \ /\/
0 /\/ \/ \/ \/ \/
. 2, 4, 6, 12, 16,...
.
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A182699,
A182709,
A186412,
A194446,
A194447,
A193870,
A206437,
A207779,
A211009,
A211978,
A211992,
A220517,
A225600,
A225610,
A228109,
A228110,
A229946.
Comments