cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 125 results. Next

A317246 Heinz numbers of supernormal integer partitions.

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 30, 32, 60, 64, 90, 128, 150, 180, 210, 256, 300, 360, 450, 512, 540, 600, 1024, 1350, 1500, 2048, 2250, 2310, 2520, 3780, 4096, 4200, 5880, 8192, 9450, 10500, 12600, 13230, 15750, 16384, 17640, 18900, 20580, 26460, 29400, 30030
Offset: 1

Views

Author

Gus Wiseman, Jul 24 2018

Keywords

Comments

An integer partition is supernormal if either (1) it is of the form 1^n for some n >= 0, or (2a) it spans an initial interval of positive integers, and (2b) its multiplicities, sorted in weakly decreasing order, are themselves a supernormal integer partition.

Examples

			Sequence of supernormal integer partitions begins: (), (1), (11), (21), (111), (211), (1111), (221), (321), (11111), (3211), (111111), (3221), (1111111), (3321), (32211), (4321).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    supnrm[q_]:=Or[q=={}||Union[q]=={1},And[Union[q]==Range[Max[q]],supnrm[Sort[Length/@Split[q],Greater]]]];
    Select[Range[10000],supnrm[primeMS[#]]&]

A325239 Irregular triangle read by rows where row 1 is {1} and row n > 1 is the sequence starting with n and repeatedly applying A181819 until 2 is reached.

Original entry on oeis.org

1, 2, 3, 2, 4, 3, 2, 5, 2, 6, 4, 3, 2, 7, 2, 8, 5, 2, 9, 3, 2, 10, 4, 3, 2, 11, 2, 12, 6, 4, 3, 2, 13, 2, 14, 4, 3, 2, 15, 4, 3, 2, 16, 7, 2, 17, 2, 18, 6, 4, 3, 2, 19, 2, 20, 6, 4, 3, 2, 21, 4, 3, 2, 22, 4, 3, 2, 23, 2, 24, 10, 4, 3, 2, 25, 3, 2, 26, 4, 3, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2019

Keywords

Comments

The function A181819 maps n = p^i*...*q^j to prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n.

Examples

			Triangle begins:
   1              26 4 3 2        51 4 3 2          76 6 4 3 2
   2              27 5 2          52 6 4 3 2        77 4 3 2
   3 2            28 6 4 3 2      53 2              78 8 5 2
   4 3 2          29 2            54 10 4 3 2       79 2
   5 2            30 8 5 2        55 4 3 2          80 14 4 3 2
   6 4 3 2        31 2            56 10 4 3 2       81 7 2
   7 2            32 11 2         57 4 3 2          82 4 3 2
   8 5 2          33 4 3 2        58 4 3 2          83 2
   9 3 2          34 4 3 2        59 2              84 12 6 4 3 2
  10 4 3 2        35 4 3 2        60 12 6 4 3 2     85 4 3 2
  11 2            36 9 3 2        61 2              86 4 3 2
  12 6 4 3 2      37 2            62 4 3 2          87 4 3 2
  13 2            38 4 3 2        63 6 4 3 2        88 10 4 3 2
  14 4 3 2        39 4 3 2        64 13 2           89 2
  15 4 3 2        40 10 4 3 2     65 4 3 2          90 12 6 4 3 2
  16 7 2          41 2            66 8 5 2          91 4 3 2
  17 2            42 8 5 2        67 2              92 6 4 3 2
  18 6 4 3 2      43 2            68 6 4 3 2        93 4 3 2
  19 2            44 6 4 3 2      69 4 3 2          94 4 3 2
  20 6 4 3 2      45 6 4 3 2      70 8 5 2          95 4 3 2
  21 4 3 2        46 4 3 2        71 2              96 22 4 3 2
  22 4 3 2        47 2            72 15 4 3 2       97 2
  23 2            48 14 4 3 2     73 2              98 6 4 3 2
  24 10 4 3 2     49 3 2          74 4 3 2          99 6 4 3 2
  25 3 2          50 6 4 3 2      75 6 4 3 2       100 9 3 2
		

Crossrefs

Row lengths are A182850(n) + 1.
See A353510 for a full square array version of this table.

Programs

  • Mathematica
    red[n_]:=Times@@Prime/@Last/@If[n==1,{},FactorInteger[n]];
    Table[NestWhileList[red,n,#>2&],{n,30}]

Formula

A001222(T(n,k)) = A323023(n,k), n > 2, k <= A182850(n).

A304464 Start with the normalized multiset of prime factors of n > 1. Given a multiset, take the multiset of its multiplicities. Repeat this until a multiset of size 1 is obtained. a(n) is the unique element of this multiset.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 3, 2, 2, 5, 2, 6, 2, 2, 4, 7, 2, 8, 2, 2, 2, 9, 2, 2, 2, 3, 2, 10, 3, 11, 5, 2, 2, 2, 2, 12, 2, 2, 2, 13, 3, 14, 2, 2, 2, 15, 2, 2, 2, 2, 2, 16, 2, 2, 2, 2, 2, 17, 2, 18, 2, 2, 6, 2, 3, 19, 2, 2, 3, 20, 2, 21, 2, 2, 2, 2, 3, 22, 2, 4, 2, 23
Offset: 1

Views

Author

Gus Wiseman, May 13 2018

Keywords

Comments

a(1) = 0 by convention.

Examples

			Starting with the normalized multiset of prime factors of 360, we obtain {1,1,1,2,2,3} -> {1,2,3} -> {1,1,1} -> {3}, so a(360) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[If[n===1,0,NestWhile[Sort[Length/@Split[#]]&,If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]],Length[#]>1&]//First],{n,100}]

Formula

a(prime(n)) = n.
a(p^n) = n where p is any prime number and n > 1.
a(product of n > 1 distinct primes) = n.

A317256 Number of alternately co-strong integer partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 11, 13, 19, 25, 35, 42, 61, 74, 98, 122, 161, 194, 254, 304, 388, 472, 589, 700, 878, 1044, 1278, 1525, 1851, 2182, 2651, 3113, 3735, 4389, 5231, 6106, 7278, 8464, 9995, 11631, 13680, 15831, 18602, 21463, 25068, 28927, 33654, 38671, 44942, 51514
Offset: 0

Views

Author

Gus Wiseman, Jul 25 2018

Keywords

Comments

A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.
Also the number of alternately strong reversed integer partitions of n.

Examples

			The a(1) = 1 through a(7) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)
       (11)  (21)   (22)    (32)     (33)      (43)
             (111)  (31)    (41)     (42)      (52)
                    (211)   (311)    (51)      (61)
                    (1111)  (2111)   (222)     (322)
                            (11111)  (321)     (421)
                                     (411)     (511)
                                     (2211)    (3211)
                                     (3111)    (4111)
                                     (21111)   (22111)
                                     (111111)  (31111)
                                               (211111)
                                               (1111111)
For example, starting with the partition y = (3,2,2,1,1) and repeatedly taking run-lengths and reversing gives (3,2,2,1,1) -> (2,2,1) -> (1,2), which is not weakly decreasing, so y is not  alternately co-strong. On the other hand, we have (3,3,2,2,1,1,1) -> (3,2,2) -> (2,1) -> (1,1) -> (2) -> (1), so (3,3,2,2,1,1,1) is counted under a(13).
		

Crossrefs

The Heinz numbers of these partitions are given by A317257.
The total (instead of alternating) version is A332275.
Dominates A332289 (the normal version).
The generalization to compositions is A332338.
The dual version is A332339.
The case of reversed partitions is (also) A332339.

Programs

  • Mathematica
    tniQ[q_]:=Or[q=={},q=={1},And[LessEqual@@Length/@Split[q],tniQ[Reverse[Length/@Split[q]]]]];
    Table[Length[Select[IntegerPartitions[n],tniQ]],{n,0,30}]

Extensions

Updated with corrected terminology by Gus Wiseman, Mar 08 2020

A333769 Irregular triangle read by rows where row k is the sequence of run-lengths of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 10 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The standard compositions and their run-lengths:
   0:        () -> ()
   1:       (1) -> (1)
   2:       (2) -> (1)
   3:     (1,1) -> (2)
   4:       (3) -> (1)
   5:     (2,1) -> (1,1)
   6:     (1,2) -> (1,1)
   7:   (1,1,1) -> (3)
   8:       (4) -> (1)
   9:     (3,1) -> (1,1)
  10:     (2,2) -> (2)
  11:   (2,1,1) -> (1,2)
  12:     (1,3) -> (1,1)
  13:   (1,2,1) -> (1,1,1)
  14:   (1,1,2) -> (2,1)
  15: (1,1,1,1) -> (4)
  16:       (5) -> (1)
  17:     (4,1) -> (1,1)
  18:     (3,2) -> (1,1)
  19:   (3,1,1) -> (1,2)
For example, the 119th composition is (1,1,2,1,1,1), so row 119 is (2,1,3).
		

Crossrefs

Row sums are A000120.
Row lengths are A124767.
Row k is the A333627(k)-th standard composition.
A triangle counting compositions by runs-resistance is A329744.
All of the following pertain to compositions in standard order (A066099):
- Partial sums from the right are A048793.
- Sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Strict compositions are A233564.
- Partial sums from the left are A272020.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Heinz number is A333219.
- Runs-resistance is A333628.
- First appearances of run-resistances are A333629.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length/@Split[stc[n]],{n,0,30}]

A325276 Irregular triangle read by rows where row n is the omega-sequence of n!.

Original entry on oeis.org

1, 2, 2, 1, 4, 2, 2, 1, 5, 3, 2, 2, 1, 7, 3, 3, 1, 8, 4, 3, 2, 2, 1, 11, 4, 3, 2, 2, 1, 13, 4, 3, 2, 2, 1, 15, 4, 4, 1, 16, 5, 4, 2, 2, 1, 19, 5, 4, 2, 2, 1, 20, 6, 4, 2, 2, 1, 22, 6, 4, 2, 1, 24, 6, 5, 2, 2, 1, 28, 6, 5, 2, 2, 1, 29, 7, 5, 2, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			Triangle begins:
  {}
  {}
   1
   2  2  1
   4  2  2  1
   5  3  2  2  1
   7  3  3  1
   8  4  3  2  2  1
  11  4  3  2  2  1
  13  4  3  2  2  1
  15  4  4  1
  16  5  4  2  2  1
  19  5  4  2  2  1
  20  6  4  2  2  1
  22  6  4  2  1
  24  6  5  2  2  1
  28  6  5  2  2  1
  29  7  5  2  2  1
  32  7  5  2  2  1
  33  8  5  2  2  1
  36  8  5  2  2  1
  38  8  5  2  2  1
  40  8  6  2  2  1
  41  9  6  2  2  1
  45  9  6  2  2  1
  47  9  6  2  2  1
  49  9  6  3  2  2  1
  52  9  6  3  2  2  1
  55  9  6  3  2  2  1
  56 10  6  3  2  2  1
  59 10  6  3  2  2  1
		

Crossrefs

Row lengths are A325272. Row sums are A325274. Row n is row A325275(n) of A112798. Second-to-last column is A325273. Column k = 1 is A022559. Column k = 2 is A000720. Column k = 3 is A071626.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[omseq[n!],{n,0,30}]

A353507 Product of multiplicities of the prime exponents (signature) of n; a(1) = 0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 19 2022

Keywords

Comments

Warning: If the prime multiplicities of n are a multiset y, this sequence gives the product of multiplicities in y, not the product of y.
Differs from A351946 at A351946(1260) = 4, a(1260) = 2.
Differs from A327500 at A327500(450) = 3, a(450) = 2.
We set a(1) = 0 so that the positions of first appearances are the primorials A002110.
Also the product of the prime metasignature of n (row n of A238747).

Examples

			The prime signature of 13860 is (2,2,1,1,1), with multiplicities (2,3), so a(13860) = 6.
		

Crossrefs

Positions of first appearances are A002110.
The prime indices themselves have product A003963, counted by A339095.
The prime signature itself has product A005361, counted by A266477.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A071625 counts distinct prime exponents (third omega).
A124010 gives prime signature, sorted A118914.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A181819 gives prime shadow, with an inverse A181821.
A238747 gives prime metasignature, sorted A353742.
A323022 gives fourth omega.

Programs

  • Maple
    f:= proc(n) local M,s;
      M:= ifactors(n)[2][..,2];
      mul(numboccur(s,M),s=convert(M,set));
    end proc:
    f(1):= 0:
    map(f, [$1..100]); # Robert Israel, May 19 2023
  • Mathematica
    Table[If[n==1,0,Times@@Length/@Split[Sort[Last/@FactorInteger[n]]]],{n,100}]
    Join[{0},Table[Times@@(Length/@Split[FactorInteger[n][[;;,2]]]),{n,2,100}]] (* Harvey P. Dale, Oct 20 2024 *)
  • Python
    from math import prod
    from itertools import groupby
    from sympy import factorint
    def A353507(n): return 0 if n == 1 else prod(len(list(g)) for k, g in groupby(factorint(n).values())) # Chai Wah Wu, May 20 2022

Formula

A012257 Irregular triangle read by rows: row 0 is {2}; if row n is {r_1, ..., r_k} then row n+1 is {r_k 1's, r_{k-1} 2's, r_{k-2} 3's, etc.}.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 4, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 4, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 13, 14
Offset: 0

Views

Author

Lionel Levine (levine(AT)ultranet.com)

Keywords

Comments

I have sometimes referred to this as Lionel Levine's triangle in lectures. - N. J. A. Sloane, Mar 21 2021
The shape of each row tends to a limit curve when scaled to a fixed size. It is the same limit curve as this continuous version: start with f_0=x over [0,1]; then repeatedly reverse (1-x), integrate from zero (x-x^2/2), scale to 1 (2x-x^2) and invert (1-sqrt(1-x)). For the limit curve we have f'(0) = F(1) = lim A011784(n+2)/(A011784(n+1)*A011784(n)) ~ 0.27887706 (obtained numerically). - Martin Fuller, Aug 07 2006

Examples

			Initial rows are:
{2},
{1,1},
{1,2},
{1,1,2},
{1,1,2,3},
{1,1,1,2,2,3,4},
{1,1,1,1,2,2,2,3,3,4,4,5,6,7},
...
		

Crossrefs

Programs

  • Haskell
    a012257 n k = a012257_tabf !! (n-1) !! (k-1)
    a012257_row n = a012257_tabf !! (n-1)
    a012257_tabf = iterate (\row -> concat $
                            zipWith replicate (reverse row) [1..]) [1, 1]
    -- Reinhard Zumkeller, Aug 11 2014, May 30 2012
  • Maple
    T:= proc(n) option remember; `if`(n=0, 2, (h->
          seq(i$h[-i], i=1..nops(h)))([T(n-1)]))
        end:
    seq(T(n), n=0..8);  # Alois P. Heinz, Mar 31 2021
  • Mathematica
    row[1] = {1, 1}; row[n_] := row[n] = MapIndexed[ Function[ Table[#2 // First, {#1}]], row[n-1] // Reverse] // Flatten; Array[row, 7] // Flatten (* Jean-François Alcover, Feb 10 2015 *)
    NestList[Flatten@ MapIndexed[ConstantArray[First@ #2, #1] &, Reverse@ #] &, {1, 1}, 6] // Flatten (* Michael De Vlieger, Jul 12 2017 *)

Formula

Sum of row n = A011784(n+2); e.g. row 5 is {1, 1, 1, 2, 2, 3, 4} and the sum of the elements is 1+1+1+2+2+3+4 = 14 = A011784(7). - Benoit Cloitre, Aug 06 2003
T(n,A011784(n+1)) = A011784(n). - Reinhard Zumkeller, Aug 11 2014

Extensions

Initial row {2} added by N. J. A. Sloane, Mar 21 2021

A317257 Heinz numbers of alternately co-strong integer partitions.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 1

Views

Author

Gus Wiseman, Jul 25 2018

Keywords

Comments

The first term absent from this sequence but present in A242031 is 180.
A sequence is alternately co-strong if either it is empty, equal to (1), or its run-lengths are weakly increasing (co-strong) and, when reversed, are themselves an alternately co-strong sequence.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
    1: {}          16: {1,1,1,1}     32: {1,1,1,1,1}
    2: {1}         17: {7}           33: {2,5}
    3: {2}         19: {8}           34: {1,7}
    4: {1,1}       20: {1,1,3}       35: {3,4}
    5: {3}         21: {2,4}         36: {1,1,2,2}
    6: {1,2}       22: {1,5}         37: {12}
    7: {4}         23: {9}           38: {1,8}
    8: {1,1,1}     24: {1,1,1,2}     39: {2,6}
    9: {2,2}       25: {3,3}         40: {1,1,1,3}
   10: {1,3}       26: {1,6}         41: {13}
   11: {5}         27: {2,2,2}       42: {1,2,4}
   12: {1,1,2}     28: {1,1,4}       43: {14}
   13: {6}         29: {10}          44: {1,1,5}
   14: {1,4}       30: {1,2,3}       45: {2,2,3}
   15: {2,3}       31: {11}          46: {1,9}
		

Crossrefs

These partitions are counted by A317256.
The complement is A317258.
Totally co-strong partitions are counted by A332275.
Alternately co-strong compositions are counted by A332338.
Alternately co-strong reversed partitions are counted by A332339.
The total version is A335376.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totincQ[q_]:=Or[Length[q]<=1,And[OrderedQ[Length/@Split[q]],totincQ[Reverse[Length/@Split[q]]]]];
    Select[Range[100],totincQ[Reverse[primeMS[#]]]&]

Extensions

Updated with corrected terminology by Gus Wiseman, Jun 04 2020

A351592 Number of Look-and-Say partitions (A239455) of n without distinct multiplicities, i.e., those that are not Wilf partitions (A098859).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 3, 1, 0, 5, 2, 8, 9, 8, 6, 21, 14, 20, 26, 31, 24, 53, 35, 60, 68, 78, 76, 140, 115, 163, 183, 232, 218, 343, 301, 433, 432, 565, 542, 774, 728, 958, 977, 1251, 1220, 1612, 1561, 2053, 2090, 2618, 2609, 3326, 3378
Offset: 0

Views

Author

Gus Wiseman, Feb 16 2022

Keywords

Comments

A partition is Look-and-Say iff it has a permutation with all distinct run-lengths. For example, the partition y = (2,2,2,1,1,1) has the permutation (2,2,1,1,1,2), with run-lengths (2,3,1), which are distinct, so y is counted under A239455(9).
A partition is Wilf iff it has distinct multiplicities of parts. For example, (2,2,2,1,1,1) has multiplicities (3,3), so is not counted under A098859(9).
The Heinz numbers of these partitions are given by A351294 \ A130091.
Is a(17) = 0 the last zero of the sequence?

Examples

			The a(9) = 1 through a(18) = 5 partitions are (empty columns not shown):
  n=9:      n=12:       n=15:         n=16:       n=18:
  --------------------------------------------------------------
  (222111)  (333111)    (333222)      (33331111)  (444222)
            (22221111)  (444111)                  (555111)
                        (2222211111)              (3322221111)
                                                  (32222211111)
                                                  (222222111111)
		

Crossrefs

Wilf partitions are counted by A098859, ranked by A130091.
Look-and-Say partitions are counted by A239455, ranked by A351294.
Non-Wilf partitions are counted by A336866, ranked by A130092.
Non-Look-and-Say partitions are counted by A351293, ranked by A351295.
A000569 = number of graphical partitions, complement A339617.
A032020 = number of binary expansions with all distinct run-lengths.
A044813 = numbers whose binary expansion has all distinct run-lengths.
A225485/A325280 = frequency depth, ranked by A182850/A323014.
A329738 = compositions with all equal run-lengths.
A329739 = compositions with all distinct run-lengths
A351013 = compositions with all distinct runs.
A351017 = binary words with all distinct run-lengths, for all runs A351016.
A351292 = patterns with all distinct run-lengths, for all runs A351200.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], !UnsameQ@@Length/@Split[#]&&Select[Permutations[#], UnsameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Formula

a(n) = A239455(n) - A098859(n). Here we assume A239455(0) = 1.

Extensions

More terms from Jinyuan Wang, Feb 14 2025
Previous Showing 31-40 of 125 results. Next