A332131
a(n) = (10^(2n+1)-1)/3 - 2*10^n.
Original entry on oeis.org
1, 313, 33133, 3331333, 333313333, 33333133333, 3333331333333, 333333313333333, 33333333133333333, 3333333331333333333, 333333333313333333333, 33333333333133333333333, 3333333333331333333333333, 333333333333313333333333333, 33333333333333133333333333333, 3333333333333331333333333333333
Offset: 0
- Brady Haran and Simon Pampena, Glitch Primes and Cyclops Numbers, Numberphile video (2015).
- Patrick De Geest, Palindromic Wing Primes: (3)1(3), updated: June 25, 2017.
- Makoto Kamada, Factorization of 33...33133...33, updated Dec 11 2018.
- Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).
Cf.
A138148 (cyclops numbers with binary digits),
A002113 (palindromes).
Cf.
A332121 ..
A332191 (variants with different repeated digit 2, ..., 9).
Cf.
A332130 ..
A332139 (variants with different middle digit 0, ..., 9).
-
A332131 := n -> (10^(2*n+1)-1)/3-2*10^n;
-
Array[3 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
-
apply( {A332131(n)=10^(n*2+1)\3-2*10^n}, [0..15])
-
def A332131(n): return 10**(n*2+1)//3-2*10**n
A077779
Numbers k such that (10^k - 1)/9 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 5, 39, 195, 19637
Offset: 1
5 is a term because (10^5 - 1)/9 + 2*10^2 = 11311.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
See
A332113 for the (prime and composite) near-repunit palindromes 1..131..1.
-
Do[ If[ PrimeQ[(10^n + 18*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 20000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077780
Numbers k such that (10^k - 1)/9 + 3*10^floor(k/2) is palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
5, 7, 65, 91, 3089
Offset: 1
7 is a term because (10^7 - 1)/9 + 3*10^3 = 1114111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n + 27*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 3100, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077783
Numbers k such that (10^k-1)/9 + 4*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 15, 91, 231, 1363, 2497, 4963, 5379, 12397, 26395, 120253, 200145
Offset: 1
15 is a term because (10^15 - 1)/9 + 4*10^7 = 111111151111111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
[n: n in [3..2000 by 2] | IsPrime((10^n+36*10^(n div 2)-1) div 9)]; // Vincenzo Librandi, Oct 13 2015
-
Do[ If[ PrimeQ[(10^n + 36*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 26400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A107125
Numbers k such that (10^(2*k+1) + 36*10^k - 1)/9 is prime.
Original entry on oeis.org
0, 1, 7, 45, 115, 681, 1248, 2481, 2689, 6198, 13197, 60126, 100072
Offset: 1
1248 is in the sequence because (10^(2*1248+1)+36*10^1248-1)/9=1(1248).5.1(1248) is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
[n: n in [0..700] | IsPrime((10^(2*n+1)+36*10^n-1) div 9)]; // Vincenzo Librandi, Oct 13 2015
-
Do[If[PrimeQ[(10^(2n + 1) + 36*10^n - 1)/9], Print[n]], {n, 2200}]
-
is(n)=ispseudoprime((10^(2*n+1)+36*10^n-1)/9) \\ Charles R Greathouse IV, Jun 06 2017
A107126
Numbers n such that (10^(2n+1)+45*10^n-1)/9 is prime.
Original entry on oeis.org
10, 14, 40, 59, 160, 412, 560, 1289, 1846
Offset: 1
14 is in the sequence because (10^(2*14+1)+45*10^14-1)/9=1(14).6.1(14) = 11111111111111611111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 45*10^n - 1)/9], Print[n]], {n, 2500}]
Position[Table[FromDigits[Join[PadRight[{},n,1],{6},PadRight[{},n,1]]],{n,1850}],?PrimeQ]//Flatten (* _Harvey P. Dale, Jun 22 2017 *)
-
is(n)=ispseudoprime((10^(2*n+1)+45*10^n-1)/9) \\ Charles R Greathouse IV, Jun 06 2017
A077777
Numbers k such that 7*(10^k - 1)/9 - 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 7, 15, 21, 25, 961, 1899, 3891, 15097, 17847
Offset: 1
15 is a term because 7*(10^15 - 1)/9 - 5*10^7 = 777777727777777.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n - 45*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 1000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
for(k=1,oo,ispseudoprime(10^k\9*7-5*10^(k\2))&&print1(k",")) \\ M. F. Hasler, Feb 08 2020
A077778
Numbers k such that (10^k - 1) - 7*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 17, 19, 705, 1061, 1395, 2631, 3837, 5749, 11753, 13537, 125877, 269479
Offset: 1
17 is a term because (10^17 - 1) - 7*10^8 = 99999999299999999.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 7*10^Floor[n/2] - 1], Print[n]], {n, 3, 14600, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077781
Numbers k such that 7*(10^k - 1)/9 - 3*10^floor(k/2) is a palindromic wing prime (also known as near-repdigit palindromic prime).
Original entry on oeis.org
5, 7, 13, 47, 73, 139, 1123, 1447, 6877, 8209, 18041, 27955, 39311, 64801
Offset: 1
7 is a term because 7*(10^7 - 1)/9 - 3*10^3 = 7774777.
- C. Caldwell and H. Dubner, The near repdigit primes A(n-k-1)B(1)A(k), especially 9(n-k-1)8(1)9(k), Journal of Recreational Mathematics, Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n - 27*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 39400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
for(n=1, 1e3, if(ispseudoprime((7*10^(2*n+1)-27*10^n-7)/9), print1(2*n+1, ", "))) \\ Altug Alkan, Nov 23 2015
A077782
Numbers k such that (10^k - 1) - 5*10^floor(m/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
29, 45, 73, 209, 2273, 35729, 50897
Offset: 1
29 is a term because (10^29 - 1) - 5*10^14 = 99999999999999499999999999999.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 5*10^Floor[n/2] - 1], Print[n]], {n, 3, 50900, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Comments