A183184
Numbers n such that 10^(2n+1)-8*10^n-1 is prime.
Original entry on oeis.org
1, 5, 13, 43, 169, 181, 1579, 18077, 22652, 157363
Offset: 1
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[10^(2n + 1) - 8*10^n - 1], Print[n]], {n, 3000}]
-
is(n)=ispseudoprime(10^(2*n+1)-8*10^n-1) \\ Charles R Greathouse IV, Jun 13 2017
A077779
Numbers k such that (10^k - 1)/9 + 2*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 5, 39, 195, 19637
Offset: 1
5 is a term because (10^5 - 1)/9 + 2*10^2 = 11311.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
See
A332113 for the (prime and composite) near-repunit palindromes 1..131..1.
-
Do[ If[ PrimeQ[(10^n + 18*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 20000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077780
Numbers k such that (10^k - 1)/9 + 3*10^floor(k/2) is palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
5, 7, 65, 91, 3089
Offset: 1
7 is a term because (10^7 - 1)/9 + 3*10^3 = 1114111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(10^n + 27*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 3100, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077783
Numbers k such that (10^k-1)/9 + 4*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 15, 91, 231, 1363, 2497, 4963, 5379, 12397, 26395, 120253, 200145
Offset: 1
15 is a term because (10^15 - 1)/9 + 4*10^7 = 111111151111111.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
[n: n in [3..2000 by 2] | IsPrime((10^n+36*10^(n div 2)-1) div 9)]; // Vincenzo Librandi, Oct 13 2015
-
Do[ If[ PrimeQ[(10^n + 36*10^Floor[n/2] - 1)/9], Print[n]], {n, 3, 26400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A107125
Numbers k such that (10^(2*k+1) + 36*10^k - 1)/9 is prime.
Original entry on oeis.org
0, 1, 7, 45, 115, 681, 1248, 2481, 2689, 6198, 13197, 60126, 100072
Offset: 1
1248 is in the sequence because (10^(2*1248+1)+36*10^1248-1)/9=1(1248).5.1(1248) is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
[n: n in [0..700] | IsPrime((10^(2*n+1)+36*10^n-1) div 9)]; // Vincenzo Librandi, Oct 13 2015
-
Do[If[PrimeQ[(10^(2n + 1) + 36*10^n - 1)/9], Print[n]], {n, 2200}]
-
is(n)=ispseudoprime((10^(2*n+1)+36*10^n-1)/9) \\ Charles R Greathouse IV, Jun 06 2017
A107126
Numbers n such that (10^(2n+1)+45*10^n-1)/9 is prime.
Original entry on oeis.org
10, 14, 40, 59, 160, 412, 560, 1289, 1846
Offset: 1
14 is in the sequence because (10^(2*14+1)+45*10^14-1)/9=1(14).6.1(14) = 11111111111111611111111111111 is prime.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[If[PrimeQ[(10^(2n + 1) + 45*10^n - 1)/9], Print[n]], {n, 2500}]
Position[Table[FromDigits[Join[PadRight[{},n,1],{6},PadRight[{},n,1]]],{n,1850}],?PrimeQ]//Flatten (* _Harvey P. Dale, Jun 22 2017 *)
-
is(n)=ispseudoprime((10^(2*n+1)+45*10^n-1)/9) \\ Charles R Greathouse IV, Jun 06 2017
A077777
Numbers k such that 7*(10^k - 1)/9 - 5*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 7, 15, 21, 25, 961, 1899, 3891, 15097, 17847
Offset: 1
15 is a term because 7*(10^15 - 1)/9 - 5*10^7 = 777777727777777.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n - 45*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 1000, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
for(k=1,oo,ispseudoprime(10^k\9*7-5*10^(k\2))&&print1(k",")) \\ M. F. Hasler, Feb 08 2020
A077778
Numbers k such that (10^k - 1) - 7*10^floor(k/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
3, 17, 19, 705, 1061, 1395, 2631, 3837, 5749, 11753, 13537, 125877, 269479
Offset: 1
17 is a term because (10^17 - 1) - 7*10^8 = 99999999299999999.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 7*10^Floor[n/2] - 1], Print[n]], {n, 3, 14600, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
A077781
Numbers k such that 7*(10^k - 1)/9 - 3*10^floor(k/2) is a palindromic wing prime (also known as near-repdigit palindromic prime).
Original entry on oeis.org
5, 7, 13, 47, 73, 139, 1123, 1447, 6877, 8209, 18041, 27955, 39311, 64801
Offset: 1
7 is a term because 7*(10^7 - 1)/9 - 3*10^3 = 7774777.
- C. Caldwell and H. Dubner, The near repdigit primes A(n-k-1)B(1)A(k), especially 9(n-k-1)8(1)9(k), Journal of Recreational Mathematics, Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[(7*10^n - 27*10^Floor[n/2] - 7)/9], Print[n]], {n, 3, 39400, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
-
for(n=1, 1e3, if(ispseudoprime((7*10^(2*n+1)-27*10^n-7)/9), print1(2*n+1, ", "))) \\ Altug Alkan, Nov 23 2015
A077782
Numbers k such that (10^k - 1) - 5*10^floor(m/2) is a palindromic wing prime (a.k.a. near-repdigit palindromic prime).
Original entry on oeis.org
29, 45, 73, 209, 2273, 35729, 50897
Offset: 1
29 is a term because (10^29 - 1) - 5*10^14 = 99999999999999499999999999999.
- C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.
-
Do[ If[ PrimeQ[10^n - 5*10^Floor[n/2] - 1], Print[n]], {n, 3, 50900, 2}] (* Robert G. Wilson v, Dec 16 2005 *)
Comments