cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 40 results. Next

A334438 Heinz numbers of all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

First differs from A185974 shifted left once at a(76) = 99, A185974(75) = 98.
A permutation of the positive integers.
This is the Abramowitz-Stegun ordering of integer partitions (A334433) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334435.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{3,4},{5,6,8},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       50: {1,3,3}
    2: {1}           13: {6}               45: {2,2,3}
    3: {2}           22: {1,5}             56: {1,1,1,4}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           25: {3,3}             54: {1,2,2,2}
    6: {1,2}         28: {1,1,4}           80: {1,1,1,1,3}
    8: {1,1,1}       30: {1,2,3}           72: {1,1,1,2,2}
    7: {4}           27: {2,2,2}           96: {1,1,1,1,1,2}
   10: {1,3}         40: {1,1,1,3}        128: {1,1,1,1,1,1,1}
    9: {2,2}         36: {1,1,2,2}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       34: {1,7}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     39: {2,6}
   11: {5}           17: {7}               55: {3,5}
   14: {1,4}         26: {1,6}             49: {4,4}
   15: {2,3}         33: {2,5}             52: {1,1,6}
   20: {1,1,3}       35: {3,4}             66: {1,2,5}
   18: {1,2,2}       44: {1,1,5}           70: {1,3,4}
   24: {1,1,1,2}     42: {1,2,4}           63: {2,2,4}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(21)(111)
        (4)(31)(22)(211)(1111)
  (5)(41)(32)(311)(221)(2111)(11111)
		

Crossrefs

Row lengths are A000041.
Ignoring length gives A129129.
Compositions under the same order are A296774 (triangle).
The dual version (sum/length/lex) is A334433.
The version for reversed partitions is A334435.
The constructive version is A334439 (triangle).
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

Formula

A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).

A049085 Irregular table T(n,k) = maximal part of the k-th partition of n, when listed in Abramowitz-Stegun order (as in A036043).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 3, 4, 3, 2, 3, 2, 2, 1, 7, 6, 5, 4, 5, 4, 3, 3, 4, 3, 2, 3, 2, 2, 1, 8, 7, 6, 5, 4, 6, 5, 4, 4, 3, 5, 4, 3, 3, 2, 4, 3, 2, 3, 2, 2, 1, 9, 8, 7, 6, 5, 7, 6, 5, 4, 5, 4, 3, 6, 5, 4, 4, 3, 3, 5, 4, 3, 3, 2, 4, 3, 2, 3, 2, 2, 1, 10, 9, 8, 7, 6, 5, 8, 7, 6
Offset: 0

Views

Author

Keywords

Comments

a(0) = 0 by convention. - Franklin T. Adams-Watters, Jun 24 2014
Like A036043 this is important for calculating sequences defined over the numeric partitions, cf. A000041. For example, the triangular array A019575 can be calculated using A036042 and this sequence.
The row sums are A006128. - Johannes W. Meijer, Jun 21 2010
The name is correct if the partitions are read in reverse, so that the parts are weakly increasing. The version for non-reversed partitions is A334441. - Gus Wiseman, May 21 2020

Examples

			Rows:
  [0];
  [1];
  [2,1];
  [3,2,1];
  [4,3,2,2,1];
  [5,4,3,3,2,2,1];
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.

Crossrefs

Row lengths are A000041.
Row sums are A006128.
The length of the partition is A036043.
The number of distinct elements of the partition is A103921.
The Heinz number of the partition is A185974.
The version ignoring length is A194546.
The version for non-reversed partitions is A334441.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.
Partitions in Abramowitz-Stegun order are A334301.

Programs

  • Maple
    with(combinat):
    nmax:=9:
    for n from 1 to nmax do
       y(n):=numbpart(n):
       P(n):=partition(n):
       for k from 1 to y(n) do
          B(k):=P(n)[k]
       od:
       for k from 1 to y(n) do
          s:=0: j:=0:
          while sJohannes W. Meijer, Jun 21 2010
  • Mathematica
    Table[If[n==0,{0},Max/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A049085(n,k)=if(n,partitions(n)[k][1],0) \\ M. F. Hasler, Jun 06 2018

Extensions

More terms from Wolfdieter Lang, Apr 28 2005
a(0) inserted by Franklin T. Adams-Watters, Jun 24 2014

A103921 Irregular triangle T(n,m) (n >= 0) read by rows: row n lists numbers of distinct parts of partitions of n in Abramowitz-Stegun order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 2, 3, 1, 2, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 3
Offset: 0

Views

Author

Wolfdieter Lang, Mar 24 2005

Keywords

Comments

T(n, m) is the number of distinct parts of the m-th partition of n in Abramowitz-Stegun order; n >= 0, m = 1..p(n) = A000041(n).
The row length sequence of this table is p(n)=A000041(n) (number of partitions).
In order to count distinct parts of a partition consider the partition as a set instead of a multiset. E.g., n=6: read [1,1,1,3] as {1,3} and count the elements, here 2.
Rows are the same as the rows of A115623, but in reverse order.
From Wolfdieter Lang, Mar 17 2011: (Start)
The number of 1s in row number n, n >= 1, is tau(n)=A000005(n), the number of divisors of n.
For the proof read off the divisors d(n,j), j=1..tau(n), from row number n of table A027750, and translate them to the tau(n) partitions d(n,1)^(n/d(n,1)), d(n,2)^(n/d(n,2)),..., d(n,tau(n))^(n/d(n,tau(n))).
See a comment by Giovanni Resta under A000005. (End)
From Gus Wiseman, May 20 2020: (Start)
The name is correct if integer partitions are read in reverse, so that the parts are weakly increasing. The non-reversed version is A334440.
Also the number of distinct parts of the n-th integer partition in lexicographic order (A193073).
Differs from the number of distinct parts in the n-th integer partition in (sum/length/revlex) order (A334439). For example, (6,2,2) has two distinct elements, while (1,4,5) has three.
(End)

Examples

			Triangle starts:
  0,
  1,
  1, 1,
  1, 2, 1,
  1, 2, 1, 2, 1,
  1, 2, 2, 2, 2, 2, 1,
  1, 2, 2, 1, 2, 3, 1, 2, 2, 2, 1,
  1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1,
  1, 2, 2, 2, 1, 2, 3, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 2, 2, 2, 2, 1,
  1, 2, 2, 2, 2, ...
a(5,4)=2 from the fourth partition of 5 in the mentioned order, i.e., (1^2,3), which has two distinct parts, namely 1 and 3.
		

Crossrefs

Row sums are A000070.
Row lengths are A000041.
The lengths of these partitions are A036043.
The maxima of these partitions are A049085.
The version for non-reversed partitions is A334440.
The version for colex instead of lex is (also) A334440.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.
Compositions in Abramowitz-Stegun order are A124734.

Programs

  • Mathematica
    Join@@Table[Length/@Union/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 20 2020 *)

Formula

a(n) = A001221(A185974(n)). - Gus Wiseman, May 20 2020

Extensions

Edited by Franklin T. Adams-Watters, May 29 2006

A334434 Heinz number of the n-th integer partition in graded lexicographic order.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 9, 10, 7, 32, 24, 18, 20, 15, 14, 11, 64, 48, 36, 27, 40, 30, 25, 28, 21, 22, 13, 128, 96, 72, 54, 80, 60, 45, 50, 56, 42, 35, 44, 33, 26, 17, 256, 192, 144, 108, 81, 160, 120, 90, 100, 75, 112, 84, 63, 70, 49, 88, 66, 55, 52, 39, 34, 19
Offset: 0

Views

Author

Gus Wiseman, May 01 2020

Keywords

Comments

A permutation of the positive integers.
This is the graded reverse of the so-called "Mathematica" order (A080577, A129129).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              11: {5}                 45: {2,2,3}
    2: {1}             64: {1,1,1,1,1,1}       50: {1,3,3}
    4: {1,1}           48: {1,1,1,1,2}         56: {1,1,1,4}
    3: {2}             36: {1,1,2,2}           42: {1,2,4}
    8: {1,1,1}         27: {2,2,2}             35: {3,4}
    6: {1,2}           40: {1,1,1,3}           44: {1,1,5}
    5: {3}             30: {1,2,3}             33: {2,5}
   16: {1,1,1,1}       25: {3,3}               26: {1,6}
   12: {1,1,2}         28: {1,1,4}             17: {7}
    9: {2,2}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
   10: {1,3}           22: {1,5}              192: {1,1,1,1,1,1,2}
    7: {4}             13: {6}                144: {1,1,1,1,2,2}
   32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    108: {1,1,2,2,2}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}       81: {2,2,2,2}
   18: {1,2,2}         72: {1,1,1,2,2}        160: {1,1,1,1,1,3}
   20: {1,1,3}         54: {1,2,2,2}          120: {1,1,1,2,3}
   15: {2,3}           80: {1,1,1,1,3}         90: {1,2,2,3}
   14: {1,4}           60: {1,1,2,3}          100: {1,1,3,3}
Triangle begins:
    1
    2
    4   3
    8   6   5
   16  12   9  10   7
   32  24  18  20  15  14  11
   64  48  36  27  40  30  25  28  21  22  13
  128  96  72  54  80  60  45  50  56  42  35  44  33  26  17
  ...
This corresponds to the tetrangle:
                  0
                 (1)
               (11)(2)
             (111)(21)(3)
        (1111)(211)(22)(31)(4)
  (11111)(2111)(221)(311)(32)(41)(5)
		

Crossrefs

Row lengths are A000041.
The dual version (sum/revlex) is A129129.
The constructive version is A193073.
Compositions under the same order are A228351.
The length-sensitive version is A334433.
The version for reversed (weakly increasing) partitions is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order (sum/length/lex) are A036036.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Row sums give A145519.

Programs

  • Maple
    T:= n-> map(p-> mul(ithprime(i), i=p), combinat[partition](n))[]:
    seq(T(n), n=0..8);  # Alois P. Heinz, Jan 26 2025
  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Join@@Table[Times@@Prime/@#&/@Sort[IntegerPartitions[n],lexsort],{n,0,8}]
    - or -
    Join@@Table[Times@@Prime/@#&/@Reverse[IntegerPartitions[n]],{n,0,8}]

Formula

A001222(a(n)) appears to be A049085(n).

A334436 Heinz numbers of all reversed integer partitions sorted first by sum and then reverse-lexicographically.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 9, 10, 12, 16, 11, 15, 14, 18, 20, 24, 32, 13, 25, 21, 27, 22, 30, 28, 36, 40, 48, 64, 17, 35, 33, 45, 26, 50, 42, 54, 44, 60, 56, 72, 80, 96, 128, 19, 49, 55, 39, 75, 63, 81, 34, 70, 66, 90, 52, 100, 84, 108, 88, 120, 112, 144, 160, 192, 256
Offset: 0

Views

Author

Gus Wiseman, May 02 2020

Keywords

Comments

First differs from A334435 at a(22) = 27, A334435(22) = 22.
A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers. For non-reversed partitions, see A129129 and A228531.
This is the so-called "Mathematica" order (A080577).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            32: {1,1,1,1,1}       42: {1,2,4}
    2: {1}           13: {6}               54: {1,2,2,2}
    3: {2}           25: {3,3}             44: {1,1,5}
    4: {1,1}         21: {2,4}             60: {1,1,2,3}
    5: {3}           27: {2,2,2}           56: {1,1,1,4}
    6: {1,2}         22: {1,5}             72: {1,1,1,2,2}
    8: {1,1,1}       30: {1,2,3}           80: {1,1,1,1,3}
    7: {4}           28: {1,1,4}           96: {1,1,1,1,1,2}
    9: {2,2}         36: {1,1,2,2}        128: {1,1,1,1,1,1,1}
   10: {1,3}         40: {1,1,1,3}         19: {8}
   12: {1,1,2}       48: {1,1,1,1,2}       49: {4,4}
   16: {1,1,1,1}     64: {1,1,1,1,1,1}     55: {3,5}
   11: {5}           17: {7}               39: {2,6}
   15: {2,3}         35: {3,4}             75: {2,3,3}
   14: {1,4}         33: {2,5}             63: {2,2,4}
   18: {1,2,2}       45: {2,2,3}           81: {2,2,2,2}
   20: {1,1,3}       26: {1,6}             34: {1,7}
   24: {1,1,1,2}     50: {1,3,3}           70: {1,3,4}
Triangle begins:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  27  22  30  28  36  40  48  64
  17  35  33  45  26  50  42  54  44  60  56  72  80  96 128
This corresponds to the following tetrangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(22)(13)(112)(1111)
  (5)(23)(14)(122)(113)(1112)(11111)
		

Crossrefs

Row lengths are A000041.
Compositions under the same order are A066099 (triangle).
The version for non-reversed partitions is A129129.
The constructive version is A228531.
The lengths of these partitions are A333486.
The length-sensitive version is A334435.
The dual version (sum/lex) is A334437.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Times@@Prime/@#&/@Reverse[Sort[Sort/@IntegerPartitions[n],lexsort]],{n,0,8}]

Formula

A001222(a(n)) = A333486(n).

A334437 Heinz number of the n-th reversed integer partition in graded lexicographical order.

Original entry on oeis.org

1, 2, 4, 3, 8, 6, 5, 16, 12, 10, 9, 7, 32, 24, 20, 18, 14, 15, 11, 64, 48, 40, 36, 28, 30, 22, 27, 21, 25, 13, 128, 96, 80, 72, 56, 60, 44, 54, 42, 50, 26, 45, 33, 35, 17, 256, 192, 160, 144, 112, 120, 88, 108, 84, 100, 52, 90, 66, 70, 34, 81, 63, 75, 39, 55, 49, 19
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

A permutation of the positive integers.
Reversed integer partitions are finite weakly increasing sequences of positive integers. The non-reversed version is A334434.
This is the graded reverse of the so-called "Mathematica" order (A080577, A129129).
The Heinz number of a reversed integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and reversed partitions.
Also Heinz numbers of partitions in colexicographic order (cf. A211992).
As a triangle with row lengths A000041, the sequence starts {{1},{2},{4,3},{8,6,5},...}, so offset is 0.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}              11: {5}                 44: {1,1,5}
    2: {1}             64: {1,1,1,1,1,1}       54: {1,2,2,2}
    4: {1,1}           48: {1,1,1,1,2}         42: {1,2,4}
    3: {2}             40: {1,1,1,3}           50: {1,3,3}
    8: {1,1,1}         36: {1,1,2,2}           26: {1,6}
    6: {1,2}           28: {1,1,4}             45: {2,2,3}
    5: {3}             30: {1,2,3}             33: {2,5}
   16: {1,1,1,1}       22: {1,5}               35: {3,4}
   12: {1,1,2}         27: {2,2,2}             17: {7}
   10: {1,3}           21: {2,4}              256: {1,1,1,1,1,1,1,1}
    9: {2,2}           25: {3,3}              192: {1,1,1,1,1,1,2}
    7: {4}             13: {6}                160: {1,1,1,1,1,3}
   32: {1,1,1,1,1}    128: {1,1,1,1,1,1,1}    144: {1,1,1,1,2,2}
   24: {1,1,1,2}       96: {1,1,1,1,1,2}      112: {1,1,1,1,4}
   20: {1,1,3}         80: {1,1,1,1,3}        120: {1,1,1,2,3}
   18: {1,2,2}         72: {1,1,1,2,2}         88: {1,1,1,5}
   14: {1,4}           56: {1,1,1,4}          108: {1,1,2,2,2}
   15: {2,3}           60: {1,1,2,3}           84: {1,1,2,4}
Triangle begins:
    1
    2
    4   3
    8   6   5
   16  12  10   9   7
   32  24  20  18  14  15  11
   64  48  40  36  28  30  22  27  21  25  13
  128  96  80  72  56  60  44  54  42  50  26  45  33  35  17
This corresponds to the following tetrangle:
                  0
                 (1)
               (11)(2)
             (111)(12)(3)
        (1111)(112)(13)(22)(4)
  (11111)(1112)(113)(122)(14)(23)(5)
		

Crossrefs

Row lengths are A000041.
The constructive version is A026791 (triangle).
The length-sensitive version is A185974.
Compositions under the same order are A228351 (triangle).
The version for non-reversed partitions is A334434.
The dual version (sum/revlex) is A334436.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colexicographic order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Sorting reversed partitions by Heinz number gives A112798.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Graded Heinz numbers are given by A215366.
Sorting partitions by Heinz number gives A296150.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    lexsort[f_,c_]:=OrderedQ[PadRight[{f,c}]];
    Table[Times@@Prime/@#&/@Sort[Sort/@IntegerPartitions[n],lexsort],{n,0,8}]

Formula

A001222(a(n)) = A193173(n).

A334442 Irregular triangle whose reversed rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5
Offset: 0

Views

Author

Gus Wiseman, May 07 2020

Keywords

Comments

First differs from A036036 for reversed partitions of 9. Namely, this sequence has (2,2,5) before (1,4,4), while A036036 has (1,4,4) before (2,2,5).

Examples

			The sequence of all partitions begins:
  ()         (2,3)        (1,1,1,1,2)    (1,1,1,2,2)
  (1)        (1,1,3)      (1,1,1,1,1,1)  (1,1,1,1,1,2)
  (2)        (1,2,2)      (7)            (1,1,1,1,1,1,1)
  (1,1)      (1,1,1,2)    (1,6)          (8)
  (3)        (1,1,1,1,1)  (2,5)          (1,7)
  (1,2)      (6)          (3,4)          (2,6)
  (1,1,1)    (1,5)        (1,1,5)        (3,5)
  (4)        (2,4)        (1,2,4)        (4,4)
  (1,3)      (3,3)        (1,3,3)        (1,1,6)
  (2,2)      (1,1,4)      (2,2,3)        (1,2,5)
  (1,1,2)    (1,2,3)      (1,1,1,4)      (1,3,4)
  (1,1,1,1)  (2,2,2)      (1,1,2,3)      (2,2,4)
  (5)        (1,1,1,3)    (1,2,2,2)      (2,3,3)
  (1,4)      (1,1,2,2)    (1,1,1,1,3)    (1,1,1,5)
This sequence can also be interpreted as the following triangle:
                  0
                 (1)
               (2)(11)
             (3)(12)(111)
        (4)(13)(22)(112)(1111)
  (5)(14)(23)(113)(122)(1112)(11111)
Taking Heinz numbers (A334438) gives:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
		

Crossrefs

Row lengths are A036043.
The version for reversed partitions is A334301.
The version for colex instead of revlex is A334302.
Taking Heinz numbers gives A334438.
The version with rows reversed is A334439.
Ignoring length gives A335122.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Reverse-lexicographically ordered partitions are A080577.
Lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				
  • PARI
    A334442_row(n)=vecsort(partitions(n),p->concat(#p,-Vecrev(p))) \\ Rows of triangle defined in EXAMPLE (all partitions of n). Wrap into [Vec(p)|p<-...] to avoid "Vecsmall". - M. F. Hasler, May 14 2020

A334441 Maximum part of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order; a(0) = 0.

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 2, 3, 2, 1, 5, 3, 4, 2, 3, 2, 1, 6, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 7, 4, 5, 6, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 8, 4, 5, 6, 7, 3, 4, 4, 5, 6, 2, 3, 3, 4, 5, 2, 3, 4, 2, 3, 2, 1, 9, 5, 6, 7, 8, 3, 4, 4, 5, 5, 6, 7, 3, 3, 4, 4, 5, 6, 2, 3, 3
Offset: 0

Views

Author

Gus Wiseman, May 06 2020

Keywords

Comments

First differs from A049085 at a(8) = 2, A049085(8) = 3.
The parts of a partition are read in the usual (weakly decreasing) order. The version for reversed (weakly increasing) partitions is A049085.

Examples

			Triangle begins:
  0
  1
  2 1
  3 2 1
  4 2 3 2 1
  5 3 4 2 3 2 1
  6 3 4 5 2 3 4 2 3 2 1
  7 4 5 6 3 3 4 5 2 3 4 2 3 2 1
  8 4 5 6 7 3 4 4 5 6 2 3 3 4 5 2 3 4 2 3 2 1
		

Crossrefs

Row lengths are A000041.
The length of the same partition is A036043.
Ignoring partition length (sum/lex) gives A036043 also.
The version for reversed partitions is A049085.
a(n) is the maximum element in row n of A334301.
The number of distinct parts in the same partition is A334440.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Partitions counted by sum and number of distinct parts are A116608.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Table[If[n==0,{0},Max/@Sort[IntegerPartitions[n]]],{n,0,10}]

A212359 Partition array for the number of representative necklaces (only cyclic symmetry) with n beads, each available in n colors. Only the color type (signature) matters.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 6, 1, 1, 2, 4, 6, 12, 24, 1, 1, 3, 4, 5, 10, 16, 20, 30, 60, 120, 1, 1, 3, 5, 6, 15, 20, 30, 30, 60, 90, 120, 180, 360, 720, 1, 1, 4, 7, 10, 7, 21, 35, 54, 70, 42, 105, 140, 210, 318, 210, 420, 630, 840, 1260, 2520, 5040
Offset: 1

Views

Author

Wolfdieter Lang, Jun 25 2012

Keywords

Comments

The row lengths sequence is A000041(n), n>=1.
The partitions are ordered like in Abramowitz-Stegun (A-St order). For the reference see A036036, where also a link to a work by C. F. Hindenburg from 1779 is found where this order has been used.
A necklace with n beads (n-necklace) has here only the cyclic C_n symmetry group. This is in contrast to, e.g., the Harary-Palmer reference, p. 44, where a n-necklace has the symmetry group D_n, the dihedral group of degree n (order 2n), which allows, in addition to C_n operations, also a turnover (in 3-space) or a reflection (in 2-space).
The necklace number a(n,k) gives the number of n-necklaces, with up to n colors for each bead, belonging to the k-th partition of n in A-St order in the following way. Write this partition with nonincreasing parts (this is the reverse of the partition as given by A-St), e.g., [3,1^2], not [1^2,3], is written as [3,1,1], a partition of n=5. In general [p[1],p[2],...,p[m]], with p[1]>=p[2]>=...>=p[m]>=1, with m the number of parts. To each such partition of n corresponds an n-multiset obtained by 'exponentiation'. For the given example the 5-multiset is {1^3,2^1,3^1}={1,1,1,2,3}. In general {1^p[1],2^p[2],...,m^p[m]}. Such an n-multiset representative (of a repetition class defined by the exponents, sometimes called signature) encodes the n-necklace color monomial by c[1]^p[1]*c[2]^p[2]*...*c[m]^p[m]. For the example one has c[1]^3*c[2]*c[3]. The number of 5-necklaces with this color assignment is a(5,4) because [3,1,1] is the 4th partition of 5 in A-St order. The a(5,4)=4 non-equivalent 5-necklaces with this color assignment are cyclic(c[1]c[1]c[1]c[2]c[3]), cyclic(c[1]c[1]c[1]c[3]c[2]), cyclic(c[1]c[1]c[2]c[1]c[3]) and cyclic(c[1]c[1]c[3]c[1]c[2]).
Such a set of a(n,k) n-necklaces for the given color assignment stands for other sets of the same order where different colors from the repertoire {c[1],...,c[n]} are chosen. In the example, the partition [3,1,1] with the representative multiset [1^3,2,3] stands for all-together 5*binomial(4,2) = 30 such sets, each leading to 4 possible non-equivalent 5-necklace arrangements. Thus one has, in total, 30*4=120 5-necklaces with color signature determined from the partition [3,1,1]. See the partition array A212360 for these numbers.
For the example n=4, k=1..5, see the Stanley reference, last line, where the numbers a(4,k) are, in A-St order, 1, 1, 2, 3, 6, summing to A072605(4).
a(n,k) is computed from the cycle index Z(C_n) for the cyclic group (see A212357 and the link given there) after the variables x_j have been replaced by the j-th power sum sum(c[i]^j,i=1..n), abbreviated as Z(C_n,c_n) with c_n:=sum(c[i],i=1..n), n>=1. The coefficient of the color assignment representative determined by the k-th partition of n in A-St order, as explained above, is a(n,k). See the Harary-Palmer reference, p. 36, Theorem (PET) with A=C_n and p. 36 eq. (2.2.10) for the cycle index polynomial Z(C_n). See the W. Lang link for more details.
The corresponding triangle with summed entries of row n which belong to partitions of n with the same number of parts is A213934. [Wolfdieter Lang, Jul 12 2012]

Examples

			n\k  1 2 3 4 5  6  7  8  9 10  11  12  13  14  15
1    1
2    1 1
3    1 1 2
4    1 1 2 3 6
5    1 1 2 4 6 12 24
6    1 1 3 4 5 10 16 20 30 60 120
7    1 1 3 5 6 15 20 30 30 60  90 120 180 360 720
...
See the link for the rows n=1..15 and the corresponding color polynomials for n=1..10.
a(4,5)=6 because the partition in question is 1^4, the corresponding color type representative multinomial is c[1]*c[2]*c[3]*c[4] (all four colors are involved), and there are the 6 C_4 non-equivalent 4-necklaces (we use here j for color c[j]): 1234, 1243, 1324, 1342, 1423 and 1432 (all taken as cyclically). For this partition there is only one color choice.
a(4,4)=3 because the partition is [2,1^2]=[2,1,1], the color representative monomial is c[1]^2*c[2]*c[3], and the arrangements are 1123, 1132  and  1213 (all taken cyclically). There are, in total, 4*binomial(3,2)=12 color multinomials of this signature (color type) in Z(C_4,c_4).
		

References

  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 36, (2.2.10).
  • R. Stanley, Enumerative combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999, p. 392, 7.24.3 Example.

Crossrefs

Cf. A212357 for Z(C_n), A072605 for the row sums.
Cf. A000041 (row lengths), A036036, A185974, A212360, A213934, A318810.

Formula

a(n,k) is the number of necklace arrangements with n beads (respecting the cyclic C_n symmetry) with color assignment given by the multiset representative obtained uniquely from the k-th partition of n in A-St order. See the comment for more details and the A-St reference.
From Álvar Ibeas, Dec 12 2020: (Start)
Let L be the k-th partition of n in A-St and d be the gcd of its parts. Abusing the notation, we write a(n, L) for a(n, k) and accordingly for other partition arrays.
a(n, L) = n^(-1) * Sum_{v|d} phi(v) * A036038(n/v, L/v), where L/v is the partwise division of L by v.
a(n, L) = Sum_{v|d} A339677(L/v).
(End)
a(n,k) = A318810(A185974(n,k)). - Andrew Howroyd, Jan 23 2025

A334440 Irregular triangle T(n,k) read by rows: row n lists numbers of distinct parts of the n-th integer partition in Abramowitz-Stegun (sum/length/lex) order.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 2, 1, 3, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 3, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3
Offset: 0

Views

Author

Gus Wiseman, May 05 2020

Keywords

Comments

The total number of parts, counting duplicates, is A036043. The version for reversed partitions is A103921.

Examples

			Triangle begins:
  0
  1
  1 1
  1 2 1
  1 1 2 2 1
  1 2 2 2 2 2 1
  1 1 2 2 1 3 2 2 2 2 1
  1 2 2 2 2 2 3 2 2 3 2 2 2 2 1
  1 1 2 2 2 2 2 3 3 2 1 3 2 3 2 2 3 2 2 2 2 1
		

Crossrefs

Row lengths are A000041.
The number of not necessarily distinct parts is A036043.
The version for reversed partitions is A103921.
Ignoring length (sum/lex) gives A103921 (also).
a(n) is the number of distinct elements in row n of A334301.
The maximum part of the same partition is A334441.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun (sum/length/lex) order are A036036.
Partitions in increasing-length colex order (sum/length/colex) are A036037.
Graded reverse-lexicographically ordered partitions are A080577.
Partitions counted by sum and number of distinct parts are A116608.
Graded lexicographically ordered partitions are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Partitions in dual Abramowitz-Stegun (sum/length/revlex) order are A334439.

Programs

  • Mathematica
    Join@@Table[Length/@Union/@Sort[IntegerPartitions[n]],{n,0,10}]

Formula

a(n) = A001221(A334433(n)).
Previous Showing 11-20 of 40 results. Next