A202365
G.f.: Sum_{n>=0} (n-x)^n * x^n / (1 + n*x - x^2)^n.
Original entry on oeis.org
1, 1, 2, 10, 54, 336, 2400, 19440, 176400, 1774080, 19595520, 235872000, 3073593600, 43110144000, 647610163200, 10374216652800, 176536039680000, 3180264062976000, 60466862776320000, 1210048630382592000, 25423825985445888000, 559567461880627200000, 12874917427270778880000
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 54*x^4 + 336*x^5 + 2400*x^6 +...
where
A(x) = 1 + (1-x)*x/(1+x-x^2) + (2-x)^2*x^2/(1+2*x-x^2)^2 + (3-x)^3*x^3/(1+3*x-x^2)^3 + (4-x)^4*x^4/(1+4*x-x^2)^4 + (5-x)^5*x^5/(1+5*x-x^2)^5 +...
-
a[n_] := Switch[n, 0|1, 1, _, (n-1)*(n+2)/2*(n-1)!];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 24 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, (m-x)^m*x^m/(1+m*x-x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n==0||n==1, 1, (n-1)*(n+2)/2 * (n-1)!)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + x + log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
A230056
G.f.: Sum_{n>=0} (n+3)^n * x^n / (1 + (n+3)*x)^n.
Original entry on oeis.org
1, 4, 9, 30, 132, 720, 4680, 35280, 302400, 2903040, 30844800, 359251200, 4550515200, 62270208000, 915372057600, 14384418048000, 240612083712000, 4268249137152000, 80029671321600000, 1581386305314816000, 32844177110384640000, 715273190403932160000, 16298010552775311360000
Offset: 0
O.g.f.: A(x) = 1 + 4*x + 9*x^2 + 30*x^3 + 132*x^4 + 720*x^5 + 4680*x^6 +...
where
A(x) = 1 + 4*x/(1+4*x) + 5^2*x^2/(1+5*x)^2 + 6^3*x^3/(1+6*x)^3 + 7^4*x^4/(1+7*x)^4 + 8^5*x^5/(1+8*x)^5 +...
E.g.f.: E(x) = 1 + 4*x + 9*x^2/2! + 30*x^3/3! + 132*x^4/4! + 720*x^5/5! +...
where
E(x) = 1 + 4*x + 9/2*x^2 + 5*x^3 + 11/2*x^4 + 6*x^5 + 13/2*x^6 + 7*x^7 +...
which is the expansion of: (2 + 4*x - 5*x^2) / (2 - 4*x + 2*x^2).
-
a:=series(add((n+3)^n*x^n/(1+(n+3)*x)^n,n=0..100),x=0,23): seq(coeff(a,x,n),n=0..22); # Paolo P. Lava, Mar 27 2019
-
a[n_] := (n + 7)*n!/2; a[0] = 1; Array[a, 25, 0] (* Amiram Eldar, Dec 11 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, ((m+3)*x)^m / (1 + (m+3)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=if(n==0, 1, (n+7) * n!/2 )}
for(n=0, 20, print1(a(n), ", "))
A354327
Expansion of e.g.f. 1/(1 + x/4 * log(1 - 2 * x)).
Original entry on oeis.org
1, 0, 1, 3, 22, 180, 1902, 23730, 344872, 5706288, 105960600, 2181449160, 49311653616, 1214109056160, 32339248301808, 926527371653520, 28410493609687680, 928335829570087680, 32201658919855225728, 1181755749910942408320, 45744743939940787150080
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+x/4*log(1-2*x))))
-
a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=i!*sum(j=2, i, 2^(j-3)/(j-1)*v[i-j+1]/(i-j)!)); v;
-
a(n) = n!*sum(k=0, n\2, 2^(n-3*k)*k!*abs(stirling(n-k, k, 1))/(n-k)!);
A298854
Characteristic polynomials of Jacobi coordinates. Triangle read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 3, 2, 6, 11, 11, 6, 24, 50, 61, 50, 24, 120, 274, 379, 379, 274, 120, 720, 1764, 2668, 3023, 2668, 1764, 720, 5040, 13068, 21160, 26193, 26193, 21160, 13068, 5040, 40320, 109584, 187388, 248092, 270961, 248092, 187388, 109584, 40320, 362880, 1026576, 1836396, 2565080, 2995125, 2995125, 2565080, 1836396, 1026576, 362880
Offset: 0
For n = 3, the polynomial is 6*x^3 + 11*x^2 + 11*x + 6.
The first few polynomials, as a table:
[ 1],
[ 1, 1],
[ 2, 3, 2],
[ 6, 11, 11, 6],
[ 24, 50, 61, 50, 24],
[120, 274, 379, 379, 274, 120]
Leftmost and rightmost columns are
A000142.
Absolute value of evaluation at x = exp(2*i*Pi/3) is
A080171.
-
b:= proc(n) option remember; `if`(n<1, n+1, expand(
n*(x+1)*b(n-1)-(n-1)^2*x*b(n-2)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
seq(T(n), n=0..10); # Alois P. Heinz, Apr 01 2021
-
P[0] = 1 ; P[1] = x + 1;
P[n_] := P[n] = n (x + 1) P[n - 1] - (n - 1)^2 x P[n - 2];
Table[CoefficientList[P[n], x], {n, 0, 9}] // Flatten (* Jean-François Alcover, Mar 16 2020 *)
-
@cached_function
def poly(n):
x = polygen(ZZ, 'x')
if n < 0:
return x.parent().zero()
elif n == 0:
return x.parent().one()
else:
return n * (x + 1) * poly(n - 1) - (n - 1)**2 * x * poly(n - 2)
A298854_row = lambda n: list(poly(n))
for n in (0..7): print(A298854_row(n))
A229036
G.f.: Sum_{n>=0} (3*n-1)^n * x^n / (1 + (3*n-1)*x)^n.
Original entry on oeis.org
1, 2, 21, 270, 4212, 77760, 1662120, 40415760, 1102248000, 33331979520, 1107097891200, 40069801094400, 1569793384051200, 66185883219456000, 2988292627358438400, 143855017177487616000, 7355369573944584192000, 398090614491857903616000, 22737098558477268725760000
Offset: 0
O.g.f.: A(x) = 1 + 2*x + 21*x^2 + 270*x^3 + 4212*x^4 + 77760*x^5 +...
where
A(x) = 1 + 2*x/(1+2*x) + 5^2*x^2/(1+5*x)^2 + 8^3*x^3/(1+8*x)^3 + 11^4*x^4/(1+11*x)^4 + 14^5*x^5/(1+14*x)^5 +...
E.g.f.: E(x) = 1 + 2*x + 21*x^2/2! + 270*x^3/3! + 4212*x^4/4! + 77760*x^5/5! +...
where
E(x) = 1 + 2*x + 21/2*x^2 + 45*x^3 + 351/2*x^4 + 648*x^5 + 4617/2*x^6 +...
which is the expansion of: (2 - 8*x + 15*x^2) / (2 - 12*x + 18*x^2).
-
Join[{1},Table[(3n+1)3^(n-1) n!/2,{n,20}]] (* Harvey P. Dale, Feb 10 2015 *)
-
{a(n)=polcoeff( sum(m=0, n, ((3*m-1)*x)^m / (1 + (3*m-1)*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = if(n==0,1,(3*n+1)*3^(n-1)*n!/2)}
for(n=0, 20, print1(a(n), ", "))
Comments