cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 61 results. Next

A188656 Decimal expansion of (1+sqrt(65))/8.

Original entry on oeis.org

1, 1, 3, 2, 7, 8, 2, 2, 1, 8, 5, 3, 7, 3, 1, 8, 7, 0, 6, 5, 4, 5, 8, 2, 6, 6, 5, 3, 7, 8, 7, 9, 7, 1, 3, 9, 1, 3, 9, 1, 7, 9, 9, 5, 3, 8, 2, 0, 1, 0, 7, 1, 6, 7, 3, 4, 9, 2, 0, 7, 4, 0, 4, 8, 6, 5, 7, 9, 8, 4, 3, 6, 8, 8, 7, 8, 2, 1, 1, 0, 2, 5, 3, 7, 0, 0, 1, 9, 2, 8, 3, 3, 3, 9, 6, 5, 3, 8, 3, 0, 4, 5, 4, 6, 8, 0, 3, 0, 8, 2, 6, 7, 4, 9, 3, 2, 3, 9, 0, 2, 6, 7, 1, 8, 5, 8, 1, 5, 1, 5
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2011

Keywords

Comments

Apart from the second digit the same as A177707.
Decimal expansion of the shape of a (1/4)-extension rectangle.
See A188640 for definitions of shape and r-extension rectangle.
A (1/4)-extension rectangle matches the continued fraction [1,7,1,1,7,1,1,7,1,1,7,1,1,7,...] for the shape L/W= (1+sqrt(65))/8. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for the (4/3)-extension rectangle, 1 square is removed first, then 7 squares, then 1 square, then 1 square, then 7 squares,..., so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			length/width = 1.13278221853731870654582665....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(1 + Sqrt[65])/8, 10, 111][[1]] (* Robert G. Wilson v, Aug 19 2011 *)

A188729 Decimal expansion of (3+sqrt(109))/10.

Original entry on oeis.org

1, 3, 4, 4, 0, 3, 0, 6, 5, 0, 8, 9, 1, 0, 5, 5, 0, 1, 7, 9, 7, 5, 7, 7, 5, 4, 0, 2, 2, 5, 4, 8, 0, 4, 7, 6, 7, 8, 2, 8, 9, 8, 4, 9, 8, 3, 7, 7, 1, 9, 7, 9, 9, 7, 5, 3, 0, 0, 5, 3, 9, 7, 2, 4, 9, 0, 0, 4, 7, 0, 3, 9, 1, 4, 6, 2, 8, 1, 3, 4, 9, 1, 8, 7, 4, 5, 3, 9, 7, 2, 9, 1, 1, 1, 2, 4, 3, 1, 3, 7, 8, 9, 7, 9, 8, 2, 2, 5, 3, 8, 2, 5, 5, 9, 3, 4, 8, 5, 1, 4, 9, 1, 6, 1, 9, 0, 3, 2, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Apr 10 2011

Keywords

Comments

Decimal expansion of shape of a (3/5)-extension rectangle; see A188640 for definitions of shape and r-extension rectangle.
Briefly, shape=length/width, and an r-extension rectangle is composed of two rectangles of shape 1/r when r<1.
The continued fraction of the constant is 1, 2, 1, 9, 1, 2, 1, 1, 2, 1, 9, 1, 2, 1, 1, 2, 1, 9, 1, 2, 1,...

Examples

			1.3440306508910550179757754022548047678289849837719799753005...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (3+Sqrt(109))/10; // G. C. Greubel, Nov 01 2018
  • Maple
    evalf((3+sqrt(109))/10,140); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    r = 3/5; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
  • PARI
    default(realprecision, 100); (3+sqrt(109))/10 \\ G. C. Greubel, Nov 01 2018
    

A188734 Decimal expansion of (7+sqrt(65))/4.

Original entry on oeis.org

3, 7, 6, 5, 5, 6, 4, 4, 3, 7, 0, 7, 4, 6, 3, 7, 4, 1, 3, 0, 9, 1, 6, 5, 3, 3, 0, 7, 5, 7, 5, 9, 4, 2, 7, 8, 2, 7, 8, 3, 5, 9, 9, 0, 7, 6, 4, 0, 2, 1, 4, 3, 3, 4, 6, 9, 8, 4, 1, 4, 8, 0, 9, 7, 3, 1, 5, 9, 6, 8, 7, 3, 7, 7, 5, 6, 4, 2, 2, 0, 5, 0, 7, 4, 0, 0, 3, 8, 5, 6, 6, 6, 7, 9, 3, 0, 7, 6, 6, 0, 9, 0, 9, 3, 6, 0, 6, 1, 6, 5, 3, 4, 9, 8, 6, 4, 7, 8, 0, 5, 3, 4, 3, 7, 1, 6, 3, 0, 3, 0
Offset: 1

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

Apart from the second digit, the same as A171417. - R. J. Mathar, Apr 15 2011
Apart from the first two digits, the same as A188941. - Joerg Arndt, Apr 16 2011
Decimal expansion of the length/width ratio of a (7/2)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A (7/2)-extension rectangle matches the continued fraction [3,1,3,3,1,3,3,1,3,3,1,3,3,...] for the shape L/W=(7+sqrt(65))/4. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the (7/2)-extension rectangle, 3 squares are removed first, then 1 square, then 3 squares, then 3 squares,..., so that the original rectangle of shape (7+sqrt(65))/4 is partitioned into an infinite collection of squares.

Examples

			3.7655644370746374130916533075759427827835990...
		

Crossrefs

Cf. A188640.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (7+Sqrt(65))/4; // G. C. Greubel, Nov 01 2018
  • Maple
    evalf((7+sqrt(65))/4,140); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    r = 7/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
  • PARI
    default(realprecision, 100); (7+sqrt(65))/4 \\ G. C. Greubel, Nov 01 2018
    

A188737 Decimal expansion of (7+sqrt(85))/6.

Original entry on oeis.org

2, 7, 0, 3, 2, 5, 7, 4, 0, 9, 5, 4, 8, 8, 1, 4, 5, 5, 1, 6, 6, 7, 0, 4, 5, 7, 1, 3, 6, 2, 7, 1, 3, 2, 1, 9, 2, 8, 7, 4, 4, 6, 7, 5, 0, 8, 1, 2, 0, 4, 1, 0, 6, 6, 8, 0, 0, 1, 2, 9, 2, 0, 3, 4, 2, 4, 0, 4, 4, 5, 1, 7, 1, 1, 3, 3, 6, 4, 5, 9, 1, 0, 1, 2, 7, 9, 8, 2, 3, 4, 8, 4, 6, 5, 5, 4, 6, 7, 6, 0, 8, 2, 3, 3, 8, 9, 9, 6, 8, 1, 4, 6, 4, 7, 8, 6, 1, 4, 0, 2, 5, 3, 5, 4, 1, 1, 0, 5, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a (7/3)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A (7/3)-extension rectangle matches the continued fraction [2,1,2,2,1,2,2,1,2,2,1,...] for the shape L/W=(7+sqrt(85))/6. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the (7/3)-extension rectangle, 2 squares are removed first, then 1 square, then 2 squares, then 2 squares,..., so that the original rectangle of shape (7+sqrt(85))/6 is partitioned into an infinite collection of squares.

Examples

			2.703257409548814551667045713627132192874467508120...
		

Crossrefs

Cf. A188640.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); (7+Sqrt(85))/6; // G. C. Greubel, Nov 01 2018
  • Maple
    evalf((7+sqrt(85))/6,140); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    r = 7/3; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
  • PARI
    default(realprecision, 100); (7+sqrt(85))/6 \\ G. C. Greubel, Nov 01 2018
    

A188655 Decimal expansion of (2+sqrt(13))/3.

Original entry on oeis.org

1, 8, 6, 8, 5, 1, 7, 0, 9, 1, 8, 2, 1, 3, 2, 9, 7, 6, 4, 3, 7, 3, 0, 7, 3, 7, 5, 5, 8, 2, 3, 4, 9, 8, 6, 4, 8, 7, 5, 0, 4, 3, 2, 1, 9, 1, 2, 8, 1, 7, 4, 8, 7, 3, 7, 5, 7, 0, 1, 5, 1, 0, 1, 8, 7, 4, 2, 3, 8, 8, 9, 8, 2, 7, 6, 4, 3, 3, 6, 8, 1, 5, 0, 6, 8, 2, 0, 6, 3, 6, 0, 6, 7, 2, 8, 3, 0, 2, 3, 9, 2, 2, 4, 5, 0, 4, 7, 2, 7, 3, 4, 1, 3, 5, 4, 5, 1, 3, 4, 5, 8, 6, 7, 6, 8, 9, 2, 7, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Apr 09 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a (4/3)-extension rectangle.
See A188640 for definitions of shape and r-extension rectangle.
A (4/3)-extension rectangle matches the continued fraction [1,1,6,1,1,1,1,6,1,1,1,1,6,...] for the shape L/W= (2+sqrt(13))/3. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for the (4/3)-extension rectangle, 1 square is removed first, then 1 square, then 6 squares, then 1 square, then 1 square,..., so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			length/width = 1.868517091821329764373....
		

Crossrefs

Programs

  • Mathematica
    r = 4/3; t = (r + (4 + r^2)^(1/2))/2; RealDigits[ N[ FullSimplify@ t, 111]][[1]]
    RealDigits[(2 + Sqrt@ 13)/3, 10, 111][[1]] (* Or *)
    RealDigits[Exp@ ArcSinh[2/3], 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *)

Extensions

a(130) corrected by Georg Fischer, Apr 01 2020

A188721 Continued fraction of (e+sqrt(4+e^2))/2.

Original entry on oeis.org

3, 21, 2, 40, 1, 8, 1, 18, 1, 4, 2, 7, 14, 25, 1, 2, 1, 4, 1, 1, 1, 1, 2, 8, 50, 4, 1, 1, 3, 1, 11, 1, 1, 2, 3, 1, 1, 3, 1, 2, 22, 1, 1, 4, 1, 4, 1, 1, 4, 4, 2, 2, 2, 57, 1, 1, 34, 5, 1, 2, 2, 1, 1, 8, 13, 2, 3, 3, 17, 1, 1, 49, 1, 2, 1, 5, 1, 7, 1, 9, 1, 11, 1, 1, 7, 13, 1, 1, 59, 4, 8, 1, 3, 1, 4, 6, 1, 9, 11, 1, 1, 4, 456, 2, 8, 23, 2, 4, 2, 2, 1066, 1, 2, 2, 1, 11, 1, 3, 2, 26
Offset: 0

Views

Author

Clark Kimberling, Apr 09 2011

Keywords

Comments

See A188640 and A188720.

Crossrefs

Cf. A188640, A188720 (decimal expansion).

Programs

  • Mathematica
    r = E; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]

Extensions

Offset changed by Andrew Howroyd, Jul 07 2024

A188727 Decimal expansion of (e+sqrt(16+e^2))/4.

Original entry on oeis.org

1, 8, 8, 8, 6, 2, 6, 2, 8, 9, 6, 4, 8, 2, 1, 6, 1, 6, 7, 0, 7, 5, 8, 1, 9, 4, 2, 5, 3, 2, 1, 7, 7, 0, 9, 2, 4, 4, 2, 4, 1, 9, 5, 2, 7, 0, 1, 1, 9, 0, 6, 0, 6, 0, 0, 9, 4, 2, 6, 4, 6, 6, 8, 8, 2, 5, 7, 9, 6, 8, 5, 5, 6, 1, 0, 1, 6, 9, 4, 5, 7, 4, 2, 8, 7, 0, 6, 2, 9, 9, 5, 7, 1, 6, 9, 2, 4, 5, 4, 1, 7, 5, 9, 0, 1, 3, 4, 9, 3, 3, 5, 7, 9, 1, 6, 1, 2, 2, 4, 6, 4, 3, 8, 9, 5, 4, 5, 0, 1, 8
Offset: 1

Views

Author

Clark Kimberling, Apr 10 2011

Keywords

Comments

Decimal expansion of shape of an (e/2)-extension rectangle; see A188640 for definitions of shape and r-extension rectangle. Briefly, an r-extension rectangle is composed of two rectangles of shape r.
An (e/2)-extension rectangle matches the continued fraction A188728 of the shape L/W = (r+sqrt(4+r^2))/2. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for an (e/2)-extension rectangle, 1 square is removed first, then 1 square, then 7 squares, then 1 square, then 46 squares,..., so that the original rectangle is partitioned into an infinite collection of squares.

Examples

			1.88862628964821616707581942532177092442419527...
		

Crossrefs

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:= RealField(); (Exp(1) + Sqrt(16 + Exp(2)))/4; // G. C. Greubel, Oct 31 2018
  • Maple
    evalf((exp(1)+sqrt(16+exp(2)))/4,140); # Muniru A Asiru, Nov 01 2018
  • Mathematica
    r = e/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]] (* A188727 *)
    ContinuedFraction[t, 120] (* A188728 *)
  • PARI
    default(realprecision, 100); (exp(1) + sqrt(16 + exp(2)))/4 \\ G. C. Greubel, Oct 31 2018
    

A188728 Continued fraction of (e+sqrt(16+e^2))/4.

Original entry on oeis.org

1, 1, 7, 1, 46, 8, 30, 1, 5, 4, 2, 6, 3, 2, 5, 1, 1, 1, 3, 50, 1, 3, 1, 1, 3, 1, 45, 1, 1, 1, 4, 1, 1, 2, 8, 2, 35, 2, 1, 27, 6, 112, 1, 113, 16, 1, 11, 1, 1, 6, 1, 12, 1, 3, 2, 15, 1, 2, 1, 1, 5, 1, 16, 2, 2, 2, 1, 10, 1, 43, 1, 13, 1, 6, 1, 4, 1, 2, 1, 1, 1, 6, 1, 8, 8, 1, 6, 3, 3, 17, 3, 1, 27, 1, 11, 1, 1, 1, 1, 1, 1, 9, 7, 2, 1, 5, 5, 7, 6, 2, 1, 5, 1, 2, 1, 5, 57, 8, 2, 1
Offset: 0

Views

Author

Clark Kimberling, Apr 10 2011

Keywords

Comments

See A188727 for the origin of the constant.

Examples

			(e+sqrt(16+e^2))/4 = [1,1,7,1,46,30,1,5,4,...].
		

Crossrefs

Cf. A188640, A188727 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ContinuedFraction((Exp(1)  + Sqrt(16 + Exp(2)))/4); // G. C. Greubel, Oct 31 2018
  • Mathematica
    r = e/2; t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]] (* A188727 *)
    ContinuedFraction[t, 120] (* A188728 *)
  • PARI
    default(realprecision, 100); contfrac((exp(1) + sqrt(16 + exp(2)))/4) \\ G. C. Greubel, Oct 31 2018
    

Extensions

Offset changed by Andrew Howroyd, Aug 08 2024

A188888 Continued fraction of sqrt(2 + sqrt(3)) or 2*cos(Pi/12).

Original entry on oeis.org

1, 1, 13, 1, 2, 15, 10, 1, 18, 1, 1, 21, 2, 1, 1, 2, 4, 5, 2, 2, 2, 11, 1, 2, 2, 3, 1, 1, 10, 1, 2, 1, 2, 3, 2, 3, 15, 1, 2, 3, 1, 1, 90, 1, 44, 2, 4, 10, 1, 11, 9, 1, 17, 1, 8, 2, 2, 6, 2, 6, 1, 3, 1, 1, 1, 2, 20, 1, 7, 27, 1, 19, 40, 1, 304, 1, 1, 2, 1, 1, 1, 62, 1, 1, 2, 1, 2, 1, 32, 1, 1, 1, 11, 1, 20, 1, 85, 1, 1, 1, 3, 3, 13, 1, 4, 1, 3, 1, 3, 1, 16, 1, 9, 3, 2, 1, 1, 30, 2, 1
Offset: 0

Views

Author

Clark Kimberling, Apr 12 2011

Keywords

Comments

For a geometric interpretation, see A188640 and A188887.

Examples

			sqrt(2+sqrt(3)) = [1,1,13,1,2,15,10,1,18,1,1,21,2,1,1,2,4,...].
		

Crossrefs

Cf. A188887 (decimal expansion).

Programs

  • Magma
    SetDefaultRealField(RealField(100));  ContinuedFraction(Sqrt(2 + Sqrt(3))); // G. C. Greubel, Sep 29 2018
  • Maple
    with(numtheory): cfrac(sqrt(2+sqrt(3)),120,'quotients'); # Muniru A Asiru, Sep 30 2018
  • Mathematica
    r = 2^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    ContinuedFraction[Sqrt[2+Sqrt[3]],120] (* Harvey P. Dale, Jul 19 2014 *)
  • PARI
    default(realprecision, 100); contfrac(sqrt(2 + sqrt(3))) \\ G. C. Greubel, Sep 29 2018
    

Extensions

Name extended by Greg Dresden, Apr 13 2018
Offset changed by Andrew Howroyd, Aug 08 2024

A188930 Decimal expansion of sqrt(5)+sqrt(6).

Original entry on oeis.org

4, 6, 8, 5, 5, 5, 7, 7, 2, 0, 2, 8, 2, 9, 6, 7, 7, 9, 4, 6, 0, 6, 4, 5, 7, 7, 4, 3, 4, 3, 7, 1, 6, 7, 6, 2, 7, 4, 0, 6, 5, 6, 5, 8, 4, 0, 2, 6, 8, 1, 9, 5, 8, 5, 2, 7, 0, 3, 5, 8, 9, 8, 1, 2, 6, 6, 1, 4, 8, 1, 3, 0, 3, 0, 9, 5, 1, 1, 9, 9, 2, 5, 9, 5, 4, 2, 7, 3, 8, 4, 1, 4, 8, 3, 4, 2, 2, 5, 0, 9, 7, 8, 8, 1, 0, 2, 7, 7, 7, 3, 7, 7, 3, 8, 7, 9, 7, 2, 6, 2, 9, 1, 1, 2, 1, 3, 3, 1, 8, 4
Offset: 1

Views

Author

Clark Kimberling, Apr 13 2011

Keywords

Comments

Decimal expansion of the length/width ratio of a sqrt(20)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(20)-extension rectangle matches the continued fraction [4,1,2,5,1,1,4,1,2,24,1,2,...] for the shape L/W=sqrt(5)+sqrt(6). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(20)-extension rectangle, 4 squares are removed first, then 1 square, then 2 squares, then 5 squares,..., so that the original rectangle of shape sqrt(5)+sqrt(6) is partitioned into an infinite collection of squares.

Examples

			4.6855577202829677946064577434371676274...
		

Crossrefs

Programs

  • Mathematica
    r = 48^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
    N[t, 130]
    RealDigits[N[t, 130]][[1]]
    ContinuedFraction[t, 120]
    RealDigits[Sqrt[5]+Sqrt[6],10,150][[1]] (* Harvey P. Dale, Nov 06 2014 *)
Previous Showing 21-30 of 61 results. Next