A275047
Diagonal of the rational function 1/(1-(1+w)(xy + xz + yz)) [even-indexed terms only].
Original entry on oeis.org
1, 18, 1350, 141120, 17151750, 2272538268, 318430816704, 46404203788800, 6961609406993670, 1068002895589987500, 166779781860762170100, 26422986893371642828800, 4236593267629481817240000, 686167053247777413372681600, 112093956900827388909570240000
Offset: 0
1 + 18*x^2 + 1350*x^4 + 141120*x^6 + ...
- Alois P. Heinz, Table of n, a(n) for n = 0..444 (first 34 terms from Gheorghe Coserea)
- A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
- R. Meštrović, Wolstenholme's theorem: Its Generalizations and Extensions in the last hundred and fifty years (1862-2012), arXiv:1111.3057 [math.NT], 2011.
- Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
- Jacques-Arthur Weil, Supplementary Material for the Paper "Diagonals of rational functions and selected differential Galois groups"
-
a:= proc(n) option remember; `if`(n=0, 1,
9*(3*n-1)^2*(3*n-2)^2*a(n-1)/((4*n-2)*n^3))
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2016
-
Table[(3*n)!^2 / (n!^4*(2*n)!), {n, 0, 20}] (* Vaclav Kotesovec, Aug 03 2016 *)
CoefficientList[Series[HypergeometricPFQ[{1/3, 1/3, 2/3, 2/3}, {1/2, 1, 1}, 729x/4], {x, 0, 10}], x] (* Benedict W. J. Irwin, Aug 05 2016 *)
-
my(x='x, y='y, z='z, w='w);
R = 1/(1-(1+w)*(x*y+x*z+y*z));
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(23, R, [x,y,z,w])
A361885
a(n) = (1/n) * Sum_{k = 0..2*n} (n+2*k) * binomial(n+k-1,k)^3.
Original entry on oeis.org
9, 979, 165816, 33372819, 7380882509, 1732912534168, 424032181044264, 106952563532680339, 27609695174536836075, 7259294757681340436979, 1937215339689731617386000, 523352118643145676922317336, 142854011885066484369862826496, 39337931825265398967484384872560
Offset: 0
-
seq( (1/n)*add((n + 2*k) * binomial(n+k-1,k)^3, k = 0..2*n), n = 1..20);
-
Table[Sum[(n+2*k) * Binomial[n+k-1,k]^3, {k,0,2*n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
-
a(n) = (1/n) * sum(k = 0, 2*n, (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023
A371400
Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).
Original entry on oeis.org
1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0
Triangle starts:
[0] 1;
[1] 2, 2;
[2] 6, 9, 6;
[3] 20, 40, 40, 20;
[4] 70, 175, 225, 175, 70;
[5] 252, 756, 1176, 1176, 756, 252;
[6] 924, 3234, 5880, 7056, 5880, 3234, 924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0: [1]
1: [1+1]
2: [1+4+1], [1+4+4]
3: [1+9+9+1], [1+9+21+9]
4: [1+16+36+16+1], [1+16+66+76+16], [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
Column 0 and main diagonal are
A000984.
Column 1 and subdiagonal are
A097070.
The even bisection of the alternating row sums is
A005809.
-
T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
-
T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
Table[T[n, k], {n, 0, 7}, {k, 0, n}]
A277584
a(n) = binomial(3n-1, n-1)^2.
Original entry on oeis.org
0, 1, 25, 784, 27225, 1002001, 38291344, 1502337600, 60101954649, 2440703175625, 100300325150025, 4161829109817600, 174077451630810000, 7330421677037621904, 310467090932230849600, 13214837914326197526784, 564927069263895118093401
Offset: 0
A370232
Triangle read by rows. T(n, k) = binomial(n + k, 2*k)^2.
Original entry on oeis.org
1, 1, 1, 1, 9, 1, 1, 36, 25, 1, 1, 100, 225, 49, 1, 1, 225, 1225, 784, 81, 1, 1, 441, 4900, 7056, 2025, 121, 1, 1, 784, 15876, 44100, 27225, 4356, 169, 1, 1, 1296, 44100, 213444, 245025, 81796, 8281, 225, 1, 1, 2025, 108900, 853776, 1656369, 1002001, 207025, 14400, 289, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 9, 1;
[3] 1, 36, 25, 1;
[4] 1, 100, 225, 49, 1;
[5] 1, 225, 1225, 784, 81, 1;
[6] 1, 441, 4900, 7056, 2025, 121, 1;
[7] 1, 784, 15876, 44100, 27225, 4356, 169, 1;
-
Table[Binomial[n + k, 2*k]^2, {n, 0, 7}, {k, 0, n}] // Flatten
A322189
G.f. A(x) satisfies: A(x)^2 + A(x) - 1 = Sum_{n>=0} binomial(3*n,n)^2 * x^n.
Original entry on oeis.org
1, 3, 72, 2208, 75531, 2748957, 104125542, 4055630148, 161248468944, 6513248563281, 266402605165194, 11007646816287168, 458676184166135532, 19248392999470239126, 812657808793768897362, 34489498873811554580556, 1470421670132406007539195, 62941195430565633995463225, 2703764557673857477236184014, 116513978125127785773539029596
Offset: 0
G.f.: A(x) = 1 + 3*x + 72*x^2 + 2208*x^3 + 75531*x^4 + 2748957*x^5 + 104125542*x^6 + 4055630148*x^7 + 161248468944*x^8 + 6513248563281*x^9 + ...
such that
A(x)^2 + A(x) - 1 = 1 + 9*x + 225*x^2 + 7056*x^3 + 245025*x^4 + 9018009*x^5 + 344622096*x^6 + 13521038400*x^7 + 540917591841*x^8 + 21966328580625*x^9 + ... + binomial(3*n,n)^2 * x^n + ...
-
{S(n) = sum(m=0,n, binomial(3*m,m)^2 * x^m ) +x*O(x^n)}
{A(n) = (sqrt(4*S(n) + 5) - 1)/2 }
{a(n) = polcoeff( A(n), n)}
for(n=0,30, print1(a(n),", "))
Comments