cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A275047 Diagonal of the rational function 1/(1-(1+w)(xy + xz + yz)) [even-indexed terms only].

Original entry on oeis.org

1, 18, 1350, 141120, 17151750, 2272538268, 318430816704, 46404203788800, 6961609406993670, 1068002895589987500, 166779781860762170100, 26422986893371642828800, 4236593267629481817240000, 686167053247777413372681600, 112093956900827388909570240000
Offset: 0

Views

Author

Gheorghe Coserea, Jul 18 2016

Keywords

Comments

Odd-order terms are zero since R(x,y,z,w) = R(-x,-y,-z,w), where R(x,y,z,w) = 1/(1-(1+w)*(x*y + x*z + y*z)).
From Peter Bala, Jun 22 2023: (Start)
a(n) = A(n,n,2*n,2*n) (= A(2*n,2*n,n,n)) in the notation of Straub, equation 8, where it is shown that the supercongruences a(n*p^r) == a(n*p^(r-1)) (mod p^(3*r)) hold for all primes p >= 5 and all positive integers n and r. This also follows from Meštrović equation 39, since a(n) = binomial(3*n,n)^2 * binomial(2*n,n).
Inductively define a family of sequences {a(i,n) : n >= 0}, i >= 1, by setting a(1,n) = a(n) and, for i >= 2, a(i,n) = [x^n] ( exp(Sum_{k >= 1} a(i-1,k)*x^k/k) )^n.
We conjecture that the sequences {a(i,n) : n >= 0}, i >= 2, also satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5, and positive integers n and r. Cf. A362725 and A362732. (End)

Examples

			1 + 18*x^2 + 1350*x^4 + 141120*x^6 + ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1,
          9*(3*n-1)^2*(3*n-2)^2*a(n-1)/((4*n-2)*n^3))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 25 2016
  • Mathematica
    Table[(3*n)!^2 / (n!^4*(2*n)!), {n, 0, 20}] (* Vaclav Kotesovec, Aug 03 2016 *)
    CoefficientList[Series[HypergeometricPFQ[{1/3, 1/3, 2/3, 2/3}, {1/2, 1, 1}, 729x/4], {x, 0, 10}], x] (* Benedict W. J. Irwin, Aug 05 2016 *)
  • PARI
    my(x='x, y='y, z='z, w='w);
    R = 1/(1-(1+w)*(x*y+x*z+y*z));
    diag(n, expr, var) = {
      my(a = vector(n));
      for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
      for (k = 1, n, a[k] = expr;
           for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
      return(a);
    };
    diag(23, R, [x,y,z,w])

Formula

0 = (-4*x^2+729*x^4)*y'''' + (-20*x+7290*x^3)*y''' + (-16+18063*x^2)*y'' + 10449*x*y' + 576*y, where y = 1 + 18*x^2 + 1350*x^4 + ...
From Vaclav Kotesovec, Aug 03 2016: (Start)
a(n) = (3*n)!^2 / (n!^4 * (2*n)!).
a(n) ~ 3^(6*n+1) / (Pi^(3/2) * n^(3/2) * 2^(2*n+2)).
(End)
G.f.: 4F3(1/3,1/3,2/3,2/3;1/2,1,1;729x/4). - Benedict W. J. Irwin, Aug 05 2016
From Peter Bala, Sep 20 2021: (Start)
a(n) = 9*(3*n - 1)^2*(3*n - 2)^2/(2*n^3*(2*n - 1))*a(n-1).
a(n) = Sum_{k = n..3*n} (-1)^k*binomial(3*n,k)^2*binomial(k,n)^2. (End)
From Peter Bala, Jun 22 2023: (Start)
a(n) = binomial(3*n,n)^2 * binomial(2*n,n) = A188662(n) * A000984(n).
a(n) = Sum_{k = 0..n} binomial(n,k)*binomial(2*n,k)*binomial(2*n-k,n)* binomial(4*n-k,2*n).
a(n) = [(x*y)^n * (z*t)^(2*n)] 1/((1 - x - y)*(1 - z - t) - x*y*z*t). (End)

A361885 a(n) = (1/n) * Sum_{k = 0..2*n} (n+2*k) * binomial(n+k-1,k)^3.

Original entry on oeis.org

9, 979, 165816, 33372819, 7380882509, 1732912534168, 424032181044264, 106952563532680339, 27609695174536836075, 7259294757681340436979, 1937215339689731617386000, 523352118643145676922317336, 142854011885066484369862826496, 39337931825265398967484384872560
Offset: 0

Views

Author

Peter Bala, Mar 28 2023

Keywords

Comments

Compare with the closed form evaluation of the binomial sums (1/n) * Sum_{k = 0..2*n} (-1)^k * (n + 2*k) * binomial(n+k-1,k) = binomial(3*n,n) and (1/n) * Sum_{k = 0..2*n} (n + 2*k) * binomial(n+k-1,k)^2 = binomial(3*n,n)^2.
The binomial coefficients u(n) := binomial(3*n,n) = A005809(n) satisfy the supercongruences u(n*p^r) == u(n*p^(r-1)) (mod p^(3*r)) for positive integers n and r and all primes p >= 5. We conjecture that the present sequence satisfies the same congruences.
More generally, for m >= 3, the sequences {b_m(n) : n >= 1} and {c_m(n) : n >= 1} defined by b_m(n) = (1/n) * Sum_{k = 0..2*n} (n + 2*k) * binomial(n+k-1,k)^m and c_m(n) = (1/n) * Sum_{k = 0..2*n} (-1)^k * (n + 2*k) * binomial(n+k-1,k)^m may satisfy the same congruences.

Crossrefs

Programs

  • Maple
    seq( (1/n)*add((n + 2*k) * binomial(n+k-1,k)^3, k = 0..2*n), n = 1..20);
  • Mathematica
    Table[Sum[(n+2*k) * Binomial[n+k-1,k]^3, {k,0,2*n}]/n, {n,1,20}] (* Vaclav Kotesovec, Mar 29 2023 *)
  • PARI
    a(n) = (1/n) * sum(k = 0, 2*n,  (n+2*k) * binomial(n+k-1,k)^3); \\ Michel Marcus, Mar 30 2023

Formula

a(n) ~ 5 * 3^(9*n + 3/2) / (19 * Pi^(3/2) * n^(3/2) * 2^(6*n + 3)). - Vaclav Kotesovec, Mar 29 2023

A371400 Triangle read by rows: T(n, k) = binomial(k + n, k)*binomial(2*n - k, n).

Original entry on oeis.org

1, 2, 2, 6, 9, 6, 20, 40, 40, 20, 70, 175, 225, 175, 70, 252, 756, 1176, 1176, 756, 252, 924, 3234, 5880, 7056, 5880, 3234, 924, 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432, 12870, 57915, 135135, 212355, 245025, 212355, 135135, 57915, 12870
Offset: 0

Views

Author

Peter Luschny, Mar 21 2024

Keywords

Comments

The main diagonal and column 0 of the triangle are the central binomial coefficients, which are the sums of the squares of Pascal's triangle entries. This sum representation can be generalized, and all terms can be seen as sums of coefficients of some polynomials. (See the Example section.)
To see this, consider T(n, k) as the value of the polynomials P(n, k)(x) at x = 1, where P(n, k)(x) = H([-n, -k], [1], x)*H([-n, -n + k], [1], x) and H denotes the hypergeometric sum 2F1. For instance column 0 is given by the row sums of A008459, and column 1 by the row sums of A371401.

Examples

			Triangle starts:
[0]    1;
[1]    2,     2;
[2]    6,     9,     6;
[3]   20,    40,    40,    20;
[4]   70,   175,   225,   175,    70;
[5]  252,   756,  1176,  1176,   756,   252;
[6]  924,  3234,  5880,  7056,  5880,  3234,   924;
[7] 3432, 13728, 28512, 39600, 39600, 28512, 13728, 3432;
.
Because of the symmetry, only the sum representation of terms with k <= n/2 are shown.
0:                 [1]
1:               [1+1]
2:             [1+4+1],               [1+4+4]
3:           [1+9+9+1],            [1+9+21+9]
4:      [1+16+36+16+1],       [1+16+66+76+16],        [1+16+76+96+36]
5: [1+25+100+100+25+1], [1+25+160+340+205+25], [1+25+190+460+400+100]
		

Crossrefs

Column 0 and main diagonal are A000984.
Column 1 and subdiagonal are A097070.
Row sums are A045721.
The even bisection of the alternating row sums is A005809.
The central terms are A188662.

Programs

  • Maple
    T := (n, k) -> binomial(k + n, k) * binomial(2*n - k, n):
    seq(print(seq(T(n, k), k = 0..n)), n = 0..8);
  • Mathematica
    T[n_, k_] := Hypergeometric2F1[-n, -k, 1, 1] Hypergeometric2F1[-n, -n +k, 1, 1];
    Table[T[n, k], {n, 0, 7}, {k, 0, n}]

Formula

T(n, k) = A046899(n, k) * A092392(n, k).
T(n, k) = A046899(n, k) * A046899(n, n - k).
T(n, k) = A092392(n, k) * A092392(n, n - k).
T(n, k) = A371395(n, k) * (n + 1).
T(n, k) = hypergeom([-n, -k], [1], 1) * hypergeom([-n, -n + k], [1], 1).
2^n*Sum_{k=0..n} T(n, k)*(1/2)^k = A244038(n).
2^n*Sum_{k=0..n} T(n, k)*(-1/2)^k = A371399(n).

A277584 a(n) = binomial(3n-1, n-1)^2.

Original entry on oeis.org

0, 1, 25, 784, 27225, 1002001, 38291344, 1502337600, 60101954649, 2440703175625, 100300325150025, 4161829109817600, 174077451630810000, 7330421677037621904, 310467090932230849600, 13214837914326197526784, 564927069263895118093401
Offset: 0

Views

Author

Seiichi Manyama, Oct 22 2016

Keywords

Crossrefs

Programs

  • Magma
    [Binomial(3*n-1, n-1)^2: n in [0..20]]; // Vincenzo Librandi, Oct 23 2016
  • Mathematica
    Table[Boole[n > 0] Binomial[3 n - 1, n - 1]^2, {n, 0, 16}] (* Michael De Vlieger, Oct 26 2016 *)
  • PARI
    a(n) = binomial(3*n-1, n-1)^2; \\ Michel Marcus, Oct 22 2016
    

Formula

a(n) = A025174(n)^2.
a(n) = A188662(n)/9 for n > 0.
Let the number of multisets of length k on n symbols be denoted by ((n, k)) = binomial(n+k-1, k).
a(n) = (Sum_{k=0..n} binomial(n, k)^2 * ((2*n, 2*n - k)))/5 for n > 0.

A370232 Triangle read by rows. T(n, k) = binomial(n + k, 2*k)^2.

Original entry on oeis.org

1, 1, 1, 1, 9, 1, 1, 36, 25, 1, 1, 100, 225, 49, 1, 1, 225, 1225, 784, 81, 1, 1, 441, 4900, 7056, 2025, 121, 1, 1, 784, 15876, 44100, 27225, 4356, 169, 1, 1, 1296, 44100, 213444, 245025, 81796, 8281, 225, 1, 1, 2025, 108900, 853776, 1656369, 1002001, 207025, 14400, 289, 1
Offset: 0

Views

Author

Peter Luschny, Feb 12 2024

Keywords

Examples

			Triangle starts:
[0] 1;
[1] 1,     1;
[2] 1,     9,       1;
[3] 1,    36,      25,       1;
[4] 1,   100,     225,      49,       1;
[5] 1,   225,    1225,     784,      81,      1;
[6] 1,   441,    4900,    7056,    2025,    121,     1;
[7] 1,   784,   15876,   44100,   27225,   4356,   169,   1;
		

Crossrefs

Shifted bisection of A182878.
Cf. A370233 (c=2), A188648 (row sums), A188662 (central terms).

Programs

  • Mathematica
    Table[Binomial[n + k, 2*k]^2, {n, 0, 7}, {k, 0, n}] // Flatten

Formula

T(n, k) = [z^k] P(n, z) where P(n, z) = Sum_{k=0..n} binomial(n + k, 2*k) * Pochhammer(n - k + c, 2*k) * z^k / (2*k)! and c = 1.
T(n, k) = [z^k] hypergeom([-n, -n, 1 + n, 1 + n], [1/2, 1/2, 1], z/16).

A322189 G.f. A(x) satisfies: A(x)^2 + A(x) - 1 = Sum_{n>=0} binomial(3*n,n)^2 * x^n.

Original entry on oeis.org

1, 3, 72, 2208, 75531, 2748957, 104125542, 4055630148, 161248468944, 6513248563281, 266402605165194, 11007646816287168, 458676184166135532, 19248392999470239126, 812657808793768897362, 34489498873811554580556, 1470421670132406007539195, 62941195430565633995463225, 2703764557673857477236184014, 116513978125127785773539029596
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2018

Keywords

Comments

Radius of convergence of g.f. A(x) is r = 2^4/3^6 = 16/729.

Examples

			G.f.: A(x) = 1 + 3*x + 72*x^2 + 2208*x^3 + 75531*x^4 + 2748957*x^5 + 104125542*x^6 + 4055630148*x^7 + 161248468944*x^8 + 6513248563281*x^9 + ...
such that
A(x)^2 + A(x) - 1 = 1 + 9*x + 225*x^2 + 7056*x^3 + 245025*x^4 + 9018009*x^5 + 344622096*x^6 + 13521038400*x^7 + 540917591841*x^8 + 21966328580625*x^9 + ... + binomial(3*n,n)^2 * x^n + ...
		

Crossrefs

Cf. A188662.

Programs

  • PARI
    {S(n) = sum(m=0,n, binomial(3*m,m)^2 * x^m ) +x*O(x^n)}
    {A(n) = (sqrt(4*S(n) + 5) - 1)/2 }
    {a(n) = polcoeff( A(n), n)}
    for(n=0,30, print1(a(n),", "))
Previous Showing 11-16 of 16 results.