A352873
Heinz numbers of integer partitions with nonnegative crank, counted by A064428.
Original entry on oeis.org
1, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89, 90
Offset: 1
The terms together with their prime indices begin:
1: () 22: (5,1) 42: (4,2,1)
3: (2) 23: (9) 43: (14)
5: (3) 25: (3,3) 45: (3,2,2)
6: (2,1) 26: (6,1) 46: (9,1)
7: (4) 27: (2,2,2) 47: (15)
9: (2,2) 29: (10) 49: (4,4)
10: (3,1) 30: (3,2,1) 50: (3,3,1)
11: (5) 31: (11) 51: (7,2)
13: (6) 33: (5,2) 53: (16)
14: (4,1) 34: (7,1) 54: (2,2,2,1)
15: (3,2) 35: (4,3) 55: (5,3)
17: (7) 37: (12) 57: (8,2)
18: (2,2,1) 38: (8,1) 58: (10,1)
19: (8) 39: (6,2) 59: (17)
21: (4,2) 41: (13) 61: (18)
* = unproved
These partitions are counted by
A064428.
The case of positive crank is
A352874.
A122111 represents partition conjugation using Heinz numbers.
A238394 counts reversed partitions without a fixed point, ranked by
A352830.
Cf.
A065770,
A093641,
A118199,
A188674,
A252464,
A257990,
A325163,
A325169,
A344609,
A352828,
A352831.
-
ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
Select[Range[100],ck[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]>=0&]
A352874
Heinz numbers of integer partitions with positive crank, counted by A001522.
Original entry on oeis.org
3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 37, 39, 41, 42, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 70, 71, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 102, 103, 105, 107, 109
Offset: 1
The terms together with their prime indices begin:
3: (2) 30: (3,2,1) 54: (2,2,2,1)
5: (3) 31: (11) 55: (5,3)
7: (4) 33: (5,2) 57: (8,2)
9: (2,2) 35: (4,3) 59: (17)
11: (5) 37: (12) 61: (18)
13: (6) 39: (6,2) 63: (4,2,2)
15: (3,2) 41: (13) 65: (6,3)
17: (7) 42: (4,2,1) 66: (5,2,1)
18: (2,2,1) 43: (14) 67: (19)
19: (8) 45: (3,2,2) 69: (9,2)
21: (4,2) 47: (15) 70: (4,3,1)
23: (9) 49: (4,4) 71: (20)
25: (3,3) 50: (3,3,1) 73: (21)
27: (2,2,2) 51: (7,2) 75: (3,3,2)
29: (10) 53: (16) 77: (5,4)
* = unproved
These partitions are counted by
A001522.
A122111 represents partition conjugation using Heinz numbers.
A238395 counts reversed partitions with a fixed point, ranked by
A352872.
Cf.
A065770,
A093641,
A118199,
A188674,
A252464,
A257990,
A325163,
A325169,
A344609,
A352828,
A352831.
-
ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
Select[Range[100],ck[Reverse[Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]]>0&]
A325165
Regular triangle read by rows where T(n,k) is the number of integer partitions of n whose inner lining partition has last (smallest) part equal to k.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 1, 0, 0, 4, 0, 2, 0, 0, 0, 5, 0, 3, 2, 0, 0, 0, 6, 0, 4, 4, 0, 0, 0, 0, 7, 0, 5, 6, 3, 0, 0, 0, 0, 8, 0, 7, 8, 6, 0, 0, 0, 0, 0, 9, 0, 9, 10, 9, 4, 0, 0, 0, 0, 0, 10, 0, 13, 12, 12, 8, 0, 0, 0, 0, 0, 0, 11
Offset: 0
Triangle begins:
1
0 1
0 0 2
0 0 0 3
0 1 0 0 4
0 2 0 0 0 5
0 3 2 0 0 0 6
0 4 4 0 0 0 0 7
0 5 6 3 0 0 0 0 8
0 7 8 6 0 0 0 0 0 9
0 9 10 9 4 0 0 0 0 0 10
0 13 12 12 8 0 0 0 0 0 0 11
0 17 16 15 12 5 0 0 0 0 0 0 12
0 24 20 18 16 10 0 0 0 0 0 0 0 13
0 31 28 21 20 15 6 0 0 0 0 0 0 0 14
0 42 36 27 24 20 12 0 0 0 0 0 0 0 0 15
0 54 50 33 28 25 18 7 0 0 0 0 0 0 0 0 16
0 71 64 45 32 30 24 14 0 0 0 0 0 0 0 0 0 17
0 90 86 57 40 35 30 21 8 0 0 0 0 0 0 0 0 0 18
Row n = 9 counts the following partitions (empty columns not shown):
(72) (63) (54) (9)
(333) (522) (432) (81)
(621) (531) (441) (711)
(5211) (4221) (3222) (6111)
(42111) (4311) (3321) (51111)
(321111) (32211) (22221) (411111)
(2211111) (33111) (3111111)
(222111) (21111111)
(111111111)
-
pml[ptn_]:=If[ptn=={},{},FixedPointList[If[#=={},{},DeleteCases[Rest[#]-1,0]]&,ptn][[-3]]];
Table[Length[Select[IntegerPartitions[n],Total[pml[#]]==k&]],{n,0,10},{k,0,n}]
-
T(n) = {my(v=Vec(1+sum(k=1, sqrtint(n), x^(k^2)/((1-y*x^k)*prod(j=1, k-1, 1 - x^j + O(x^(n+1-k^2))))^2))); vector(#v, i, Vecrev(v[i], -i))}
{ my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 19 2023
A325185
Heinz numbers of integer partitions such that the upper-left square of the Young diagram has strictly greater graph-distance from the lower-right boundary than any other square.
Original entry on oeis.org
2, 6, 9, 10, 12, 14, 20, 22, 24, 26, 28, 30, 34, 38, 40, 42, 44, 45, 46, 48, 50, 52, 56, 58, 60, 62, 63, 66, 68, 70, 74, 75, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 106, 110, 112, 114, 116, 117, 118, 120, 122, 124, 125, 126, 130, 132
Offset: 1
The sequence of terms together with their prime indices begins:
2: {1}
6: {1,2}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
20: {1,1,3}
22: {1,5}
24: {1,1,1,2}
26: {1,6}
28: {1,1,4}
30: {1,2,3}
34: {1,7}
38: {1,8}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
46: {1,9}
48: {1,1,1,1,2}
-
hptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
otb[ptn_]:=Min@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
Select[Range[2,100],otb[hptn[#]]>otb[Rest[hptn[#]]]&&otb[hptn[#]]>otb[DeleteCases[hptn[#]-1,0]]&]
A330369
Triangle read by rows: T(n,k) (1 <= k <= n) is the total number of right angles of size k in all partitions of n.
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 1, 0, 1, 4, 2, 0, 0, 2, 5, 3, 2, 0, 2, 3, 6, 4, 4, 0, 0, 4, 4, 7, 5, 6, 3, 0, 3, 6, 5, 8, 7, 8, 7, 0, 1, 6, 8, 6, 9, 9, 10, 11, 4, 0, 6, 9, 10, 7, 10, 13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11
Offset: 1
Triangle begins:
1;
0, 2;
0, 0, 3;
1, 0, 1, 4;
2, 0, 0, 2, 5;
3, 2, 0, 2, 3, 6;
4, 4, 0, 0, 4, 4, 7;
5, 6, 3, 0, 3, 6, 5, 8;
7, 8, 7, 0, 1, 6, 8, 6, 9;
9, 10, 11, 4, 0, 6, 9, 10, 7, 10;
13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11;
Figure 1 below shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. Figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
. Right-angles Right
Part Ferrers diagram Part diagram angle
_ _ _ _ _ _ _
7 * * * * * * * 7 | _ _ _ _ _ _| 14
6 * * * * * * 6 | | _ _ _ _| 8
3 * * * 3 | | | | 2
3 * * * 3 | | |_|
2 * * 2 | |_|
1 * 1 | |
1 * 1 | |
1 * 1 |_|
.
Figure 1. Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows:
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1|_|
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7
2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6
2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2
2| |_| 2| |_| 1| | 2|_|_| 1|_|
1| | 1|_| 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _
2| _|5 3| _ _|5 4| _ _ _|5
2| | |3 3| | _|3 4|_|_ _ _|3
2| | | 2|_|_|
2|_|_|
.
There are 5 right angles of size 1, so T(8,1) = 5.
There are 6 right angles of size 2, so T(8,2) = 6.
There are 3 right angles of size 3, so T(8,3) = 3.
There are no right angle of size 4, so T(8,4) = 0.
There are 3 right angles of size 5, so T(8,5) = 3.
There are 6 right angles of size 6, so T(8,6) = 6.
There are 5 right angles of size 7, so T(8,7) = 5.
There are 8 right angles of size 8, so T(8,8) = 8.
Hence the 8th row of triangle is [5, 6, 3, 0, 3, 6, 5, 8].
Note that the sum of the terms after the last zero is 3 + 6 + 5 + 8 = 22, equaling A000041(8) = 22, the number of partitions of 8.
- G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143 [Defines the right angles in the Ferrers graph of a partition. - N. J. A. Sloane, Nov 20 2020]
A295341
The number of partitions of n in which at least one part is a multiple of 3.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 4, 6, 9, 14, 20, 29, 41, 57, 78, 106, 142, 189, 250, 327, 425, 549, 705, 900, 1144, 1445, 1819, 2279, 2844, 3534, 4379, 5403, 6648, 8152, 9969, 12152, 14780, 17920, 21682, 26163, 31504, 37842, 45371, 54270, 64800, 77211, 91842, 109031, 129235, 152897
Offset: 0
From _Gus Wiseman_, May 23 2022: (Start)
The a(0) = 0 through a(8) = 9 partitions with a part that is a multiple of 3:
. . . (3) (31) (32) (6) (43) (53)
(311) (33) (61) (62)
(321) (322) (332)
(3111) (331) (431)
(3211) (611)
(31111) (3221)
(3311)
(32111)
(311111)
(End)
These partitions are ranked by
A354235.
A046099 lists non-cubefree numbers.
-
Table[Length[Select[IntegerPartitions[n],MemberQ[#/3,?IntegerQ]&]],{n,0,30}] (* _Gus Wiseman, May 23 2022 *)
Table[Length[Select[IntegerPartitions[n],MatchQ[#,{_,x_,x_,x_,_}]&]],{n,0,30}] (* Gus Wiseman, May 23 2022 *)
A226541
Number of unimodal compositions of n where the maximal part appears three times.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, 2, 3, 5, 7, 11, 16, 24, 34, 51, 71, 102, 143, 201, 276, 384, 522, 714, 964, 1301, 1739, 2328, 3084, 4085, 5377, 7064, 9226, 12036, 15616, 20228, 26092, 33584, 43067, 55125, 70308, 89502, 113598, 143889, 181755, 229160, 288186, 361750, 453046, 566346, 706464
Offset: 0
Cf.
A006330 (max part appears once),
A114921 (max part appears twice).
Cf.
A188674 (max part m appears m times),
A001522 (max part m appears at least m times).
Cf.
A001523 (max part appears any number of times).
Cf.
A000009 (symmetric, max part m appears once; also symmetric, max part appears an odd number of times).
Cf.
A035363 (symmetric, max part m appears twice; also symmetric, max part appears an even number of times).
Cf.
A087897 (symmetric, max part m appears 3 times).
Cf.
A027349 (symmetric, max part m appears m times),
A189357 (symmetric, max part m appears at least m times).
-
N=66; x='x+O('x^N); Vec(sum(n=0,N, x^(3*n) / prod(k=1,n-1, 1-x^k )^2 ))
A325190
Number of integer partitions of n whose Young diagram has last part of its origin-to-boundary partition equal to 2.
Original entry on oeis.org
0, 0, 2, 0, 0, 2, 4, 2, 2, 4, 8, 10, 12, 10, 14, 20, 28, 36, 44, 46, 56, 66, 86, 108, 136, 160, 190, 214, 252, 298, 364, 434, 524, 620, 728, 834, 966, 1112, 1306, 1522, 1788, 2088, 2448, 2822, 3256, 3720, 4264, 4876, 5610, 6434, 7420
Offset: 0
The a(2) = 1 through a(11) = 10 partitions:
(2) (32) (33) (52) (62) (72) (82) (92)
(11) (221) (42) (22111) (221111) (432) (433) (443)
(222) (3321) (442) (533)
(2211) (2211111) (532) (542)
(3322) (632)
(3331) (3332)
(33211) (33221)
(22111111) (33311)
(332111)
(221111111)
-
ptnmat[ptn_]:=PadRight[(ConstantArray[1,#]&)/@Sort[ptn,Greater],{Length[ptn],Max@@ptn}+1];
corpos[mat_]:=ReplacePart[mat,Select[Position[mat,1],Times@@Extract[mat,{#+{1,0},#+{0,1}}]==0&]->0];
Table[Length[Select[IntegerPartitions[n],Apply[Plus,If[#=={},{},FixedPointList[corpos,ptnmat[#]][[-3]]],{0,1}]==2&]],{n,30}]
A330379
Triangle read by rows: T(n,k) (1 <= k <= n) is the sum of the sizes of all right angles of size k of all partitions of n.
Original entry on oeis.org
1, 0, 4, 0, 0, 9, 1, 0, 3, 16, 2, 0, 0, 8, 25, 3, 4, 0, 8, 15, 36, 4, 8, 0, 0, 20, 24, 49, 5, 12, 9, 0, 15, 36, 35, 64, 7, 16, 21, 0, 5, 36, 56, 48, 81, 9, 20, 33, 16, 0, 36, 63, 80, 63, 100, 13, 24, 45, 40, 0, 12, 77, 96, 108, 80, 121
Offset: 1
Triangle begins:
1;
0, 4;
0, 0, 9;
1, 0, 3, 16;
2, 0, 0, 8, 25;
3, 4, 0, 8, 15, 36;
4, 8, 0, 0, 20, 24, 49;
5, 12, 9, 0, 15, 36, 35, 64;
7, 16, 21, 0, 5, 36, 56, 48, 81;
9, 20, 33, 16, 0, 36, 63, 80, 63, 100;
13, 24, 45, 40, 0, 12, 77, 96, 108, 80, 121;
...
Below the figure 1 shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. The figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
. Right-angles Right
Part Ferrers diagram Part diagram angle
_ _ _ _ _ _ _
7 * * * * * * * 7 | _ _ _ _ _ _| 14
6 * * * * * * 6 | | _ _ _ _| 8
3 * * * 3 | | | | 2
3 * * * 3 | | |_|
2 * * 2 | |_|
1 * 1 | |
1 * 1 | |
1 * 1 |_|
.
Figure 1. Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams look as shown below:
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1|_|
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7
2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6
2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2
2| |_| 2| |_| 1| | 2|_|_| 1|_|
1| | 1|_| 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _
2| _|5 3| _ _|5 4| _ _ _|5
2| | |3 3| | _|3 4|_|_ _ _|3
2| | | 2|_|_|
2|_|_|
.
There are 5 right angles of size 1, so T(8,1) = 5*1 = 5.
There are 6 right angles of size 2, so T(8,2) = 6*2 = 12.
There are 3 right angles of size 3, so T(8,3) = 3*3 = 9.
There are no right angle of size 4, so T(8,4) = 0*4 = 0.
There are 3 right angles of size 5, so T(8,5) = 3*5 = 15.
There are 6 right angles of size 6, so T(8,6) = 6*6 = 36.
There are 5 right angles of size 7, so T(8,7) = 5*7 = 35.
There are 8 right angles of size 8, so T(8,8) = 8*8 = 64.
Hence the 8th row of triangle is [5, 12, 9, 0, 15, 36, 35, 64].
The row sum gives A066186(8) = 8*A000041(8) = 8*22 = 176.
- G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143.
Row sums of the terms that are after last zero give
A179862.
A352875
Number of integer compositions y of n with a fixed point y(i) = i.
Original entry on oeis.org
0, 1, 1, 2, 5, 10, 21, 42, 86, 174, 351, 708, 1424, 2861, 5743, 11520, 23092, 46269, 92673, 185562, 371469, 743491, 1487870, 2977164, 5956616, 11916910, 23839736, 47688994, 95393322, 190811346, 381662507, 763389209, 1526881959, 3053930971, 6108131542, 12216698288
Offset: 0
The a(0) = 0 through a(5) = 10 compositions (empty column indicated by dot):
. (1) (11) (12) (13) (14)
(111) (22) (32)
(112) (113)
(121) (122)
(1111) (131)
(221)
(1112)
(1121)
(1211)
(11111)
The complement for partitions is
A064428, ranked by
A352826 (unproved).
The complement is counted by
A238351.
The case of just one fixed point is
A240736.
A238352 counts reversed partitions by fixed points, rank statistic
A352822.
A352512 counts fixed points in standard compositions, nonfixed
A352513.
A352833 counts partitions by fixed points.
-
pq[y_]:=Length[Select[Range[Length[y]],#==y[[#]]&]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],pq[#]>0&]],{n,0,15}]
-
S(v,u,c)={vector(#v, k, c + sum(i=1, k-1, v[k-i]*u[i]))}
seq(n)={my(v=vector(1+n), s=vector(#v, i, 2^(i-2))); v[1]=1; s[1]=0; for(i=1, n, v=S(v, vector(n, j, if(j==i,'x,1)), O(x)); s-=apply(p->polcoef(p,0), v)); s} \\ Andrew Howroyd, Jan 02 2023
Comments