cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A192876 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

1, 1, 4, 9, 31, 94, 309, 989, 3212, 10373, 33595, 108670, 351729, 1138113, 3683172, 11918737, 38570247, 124815294, 403911805, 1307084405, 4229816636, 13687969901, 44295207939, 143342292894, 463865421721, 1501100008249
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x + 1, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.

Crossrefs

Programs

  • GAP
    a:=[1,1,4,9,31];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] - 5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019
    
  • Maple
    seq(coeff(series((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Jan 08 2019
  • Mathematica
    q = x^2; s = x + 1; z = 26;
    p[0, x_] := 1; p[1, x_] := x + 1;
    p[n_, x_] := p[n - 1, x]*x + 2*p[n - 2, x]*x^2 + 1;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}] := FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]  (* A192876 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]  (* A192877 *)
    FindLinearRecurrence[u0]
    FindLinearRecurrence[u1]
    LinearRecurrence[{2,6,-5,-6,4},{1,1,4,9,31},26] (* Ray Chandler, Aug 02 2015 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2) )) \\ G. C. Greubel, Jan 08 2019
    
  • Sage
    ((1-x-4*x^2)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
    

Formula

a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: (1-x-4*x^2) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2) ). - R. J. Mathar, May 06 2014

A192877 Coefficient of x in the reduction by (x^2->x+1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

0, 1, 4, 14, 47, 152, 496, 1601, 5192, 16786, 54351, 175836, 569100, 1841513, 5959484, 19284934, 62407951, 201955408, 653543000, 2114907025, 6843987040, 22147600586, 71671151919, 231932702004, 750550018452, 2428830833977
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x + 1, and p(n,x) = x*p(n-1,x) + 2*(x^2)*p(n-1,x) + 1. See A192872.

Crossrefs

Programs

  • GAP
    a:=[0,1,4,14,47];; for n in [6..30] do a[n]:=2*a[n-1]+6*a[n-2] -5*a[n-3]-6*a[n-4]+4*a[n-5]; od; a; # G. C. Greubel, Jan 08 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)) )); // G. C. Greubel, Jan 08 2019
    
  • Mathematica
    (See A192876.)
    LinearRecurrence[{2,6,-5,-6,4}, {0,1,4,14,47}, 30] (* G. C. Greubel, Jan 08 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2)))) \\ G. C. Greubel, Jan 08 2019
    
  • Sage
    (x*(1+2*x)/((1-x)*(1+x-x^2)*(1-2*x-4*x^2))).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
    

Formula

a(n) = 2*a(n-1) + 6*a(n-2) - 5*a(n-3) - 6*a(n-4) + 4*a(n-5).
G.f.: x*(1+2*x) / ( (1-x)*(1+x-x^2)*(1-2*x-4*x^2) ). - R. J. Mathar, May 06 2014

A192880 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

1, 0, 3, 7, 34, 123, 495, 1912, 7501, 29253, 114342, 446545, 1744489, 6814224, 26618619, 103979239, 406172770, 1586623227, 6197795703, 24210320296, 94572284197, 369425778645, 1443080391558, 5637075481729, 22019992977457
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x, and p(n,x) = 2*x*p(n-1,x) + (x^2)*p(n-1,x). See A192872.

Crossrefs

Programs

  • GAP
    a:=[1,0,3,7];; for n in [5..30] do a[n]:=2*a[n-1]+7*a[n-2] +2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jan 08 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)*(1-3*x-x^2)/(1-2*x-7*x^2-2*x^3+x^4) )); // G. C. Greubel, Jan 08 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 25;
    p[0, x_]:= 1; p[1, x_]:= x;
    p[n_, x_]:= 2 p[n-1, x]*x + p[n-2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192880 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192882 *)
    FindLinearRecurrence[u1]
    FindLinearRecurrence[u2]
    (* Additional programs *)
    LinearRecurrence[{2,7,2,-1}, {1,0,3,7}, 30] (* G. C. Greubel, Jan 08 2019 *)
    Table[Fibonacci[n-1]*LucasL[n, 2]/2, {n,0,30}] (* G. C. Greubel, Jul 29 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)*(1-3*x-x^2)/(1-2*x-7*x^2-2*x^3+x^4)) \\ G. C. Greubel, Jan 08 2019
    
  • SageMath
    ((1+x)*(1-3*x-x^2)/(1-2*x-7*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
    
  • SageMath
    [fibonacci(n-1)*lucas_number2(n, 2, -1)/2 for n in (0..30)] # G. C. Greubel, Jul 29 2019
    

Formula

a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: (1+x)*(1-3*x-x^2) / ( 1-2*x-7*x^2-2*x^3+x^4 ). - R. J. Mathar, May 07 2014
a(n) = Fibonacci(n-1)*Pell-Lucas(n)/2, where Pell-Lucas(n) = A002203(n). - G. C. Greubel, Jul 29 2019

A192882 Coefficient of x in the reduction by (x^2 -> x+1) of the polynomial p(n,x) given in Comments.

Original entry on oeis.org

0, 1, 3, 14, 51, 205, 792, 3107, 12117, 47362, 184965, 722591, 2822544, 11025793, 43069611, 168242270, 657200859, 2567211037, 10028243016, 39173122739, 153021167805, 597743469778, 2334953116653, 9120979734623, 35629097057568
Offset: 0

Views

Author

Clark Kimberling, Jul 11 2011

Keywords

Comments

The polynomial p(n,x) is defined by p(0,x) = 1, p(1,x) = x, and p(n,x) = 2*x*p(n-1,x) + (x^2)*p(n-1,x). See A192872.

Crossrefs

Programs

  • GAP
    a:=[0,1,3,14];; for n in [5..30] do a[n]:=2*a[n-1]+7*a[n-2] +2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Jan 08 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+x+x^2)/(1-2*x-7*x^2-2*x^3+x^4) )); // G. C. Greubel, Jan 08 2019
    
  • Mathematica
    (* First program *)
    q = x^2; s = x + 1; z = 25;
    p[0, x_]:= 1; p[1, x_]:= x;
    p[n_, x_]:= 2 p[n-1, x]*x + p[n-2, x]*x^2;
    Table[Expand[p[n, x]], {n, 0, 7}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192880 *)
    u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192882 *)
    FindLinearRecurrence[u1]
    FindLinearRecurrence[u2]
    (* Additional programs *)
    LinearRecurrence[{2,7,2,-1}, {0,1,3,14}, 30] (* G. C. Greubel, Jan 08 2019 *)
    Table[Fibonacci[n]*LucasL[n, 2]/2, {n,0,30}] (* G. C. Greubel, Jul 29 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1+x+x^2)/(1-2*x-7*x^2-2*x^3 +x^4))) \\ G. C. Greubel, Jan 08 2019
    
  • Sage
    (x*(1+x+x^2)/(1-2*x-7*x^2-2*x^3+x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 08 2019
    

Formula

a(n) = 2*a(n-1) + 7*a(n-2) + 2*a(n-3) - a(n-4).
G.f.: x*(1+x+x^2) / ( 1-2*x-7*x^2-2*x^3+x^4 ). - R. J. Mathar, May 07 2014
a(n) = Fibonacci(n)*Pell-Lucas(n)/2, where Pell-Lucas(n) = A002203(n). - G. C. Greubel, Jul 29 2019

A192905 Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

0, 1, 3, 8, 25, 79, 248, 777, 2435, 7632, 23921, 74975, 234992, 736529, 2308483, 7235416, 22677769, 71078319, 222778856, 698249753, 2188505347, 6859373216, 21499148257, 67384199871, 211200478176, 661959956001, 2074763216131
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x. For details, see A192904.

Crossrefs

Programs

  • GAP
    a:=[0,1,3,8];; for n in [5..30] do a[n]:=3*a[n-1]+a[n-3]+a[n-4]; od; a; # G. C. Greubel, Jan 11 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1-x^2)/(1-3*x-x^3-x^4) )); // G. C. Greubel, Jan 11 2019
    
  • Mathematica
    (See A192904.)
    LinearRecurrence[{3,0,1,1}, {0,1,3,8}, 30] (* G. C. Greubel, Jan 11 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1-x^2)/(1-3*x-x^3-x^4))) \\ G. C. Greubel, Jan 11 2019
    
  • Sage
    (x*(1-x^2)/(1-3*x-x^3-x^4)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 11 2019
    

Formula

a(n) = 3*a(n-1) + a(n-3) + a(n-4).
G.f.: x*(1-x)*(1+x)/(1-3*x-x^3-x^4). - Colin Barker, Aug 31 2012

A192908 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 1, 3, 7, 17, 43, 111, 289, 755, 1975, 5169, 13531, 35423, 92737, 242787, 635623, 1664081, 4356619, 11405775, 29860705, 78176339, 204668311, 535828593, 1402817467, 3672623807, 9615053953, 25172538051, 65902560199
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x), with p(0,x) = 1, p(1,x) = x + 1.

Crossrefs

Cf. A000045; A052995: 2*Fibonacci(2*n-1) for n>0.

Programs

  • GAP
    Concatenation([1], List([1..30], n -> 1+2*Fibonacci(2*(n-1)))); # G. C. Greubel, Jan 11 2019
  • Magma
    [1] cat [1+2*Fibonacci(2*(n-1)): n in [1..30]]; // G. C. Greubel, Jan 11 2019
    
  • Mathematica
    u = 1; v = 1; a = 1; b = 1; c = 1; d = 1; e = 0; f = 1;
    q = x^2; s = u*x + v; z = 26;
    p[0, x_] := a;  p[1, x_] := b*x + c
    p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;
    Table[Expand[p[n, x]], {n, 0, 8}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}]    (* A192908 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}]    (* A069403 *)
    Simplify[FindLinearRecurrence[u0]] (* recurrence for 0-sequence *)
    Simplify[FindLinearRecurrence[u1]] (* recurrence for 1-sequence *)
    LinearRecurrence[{4,-4,1}, {1,1,3,7}, 30] (* G. C. Greubel, Jan 11 2019 *)
  • PARI
    vector(30, n, n--; if(n==0,1,1+2*fibonacci(2*n-2))) \\ G. C. Greubel, Jan 11 2019
    
  • Sage
    [1]+[1+2*fibonacci(2*(n-1)) for n in (1..30)] # G. C. Greubel, Jan 11 2019
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3) for n>3.
G.f.: 1 + x*(1 - x - x^2)/((1 - x)*(1 - 3*x + x^2)). - R. J. Mathar, Jul 13 2011
a(n) = 2*Fibonacci(2*n-2) + 1 for n>0, a(0)=1. - Bruno Berselli, Dec 27 2016
a(n) = -1 + 3*a(n-1) - a(n-2) with a(1) = 1 and a(2) = 3. Cf. A055588 and A097136. - Peter Bala, Nov 12 2017

A192909 Constant term in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

1, 1, 3, 9, 27, 83, 259, 811, 2541, 7963, 24957, 78221, 245165, 768413, 2408415, 7548629, 23659463, 74155215, 232422687, 728476151, 2283243129, 7156307287, 22429820697, 70301181369, 220343094521, 690615411545, 2164577236699
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x) + 1, with p(0,x) = 1, p(1,x) = x + 1.

Crossrefs

Programs

  • GAP
    a:=[1,1,3,9,27];; for n in [6..30] do a[n]:=4*a[n-1]-3*a[n-2] +a[n-3]-a[n-5]; od; a; # G. C. Greubel, Jan 11 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (x^2-x+1)*(x^2+2*x-1)/((1-x)*(x^4+x^3+3*x-1)) )); // G. C. Greubel, Jan 11 2019
    
  • Mathematica
    u = 1; v = 1; a = 1; b = 1; c = 1; d = 1; e = 1; f = 1;
    q = x^2; s = u*x + v; z = 24;
    p[0, x_] := a;  p[1, x_] := b*x + c
    p[n_, x_] := d*(x^2)*p[n - 1, x] + e*x*p[n - 2, x] + f;
    Table[Expand[p[n, x]], {n, 0, 8}]
    reduce[{p1_, q_, s_, x_}]:= FixedPoint[(s PolynomialQuotient @@ #1 + PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1]
    t = Table[reduce[{p[n, x], q, s, x}], {n, 0, z}];
    u0 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] (* A192909 *)
    u1 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] (* A192910 *)
    Simplify[FindLinearRecurrence[u0]]
    Simplify[FindLinearRecurrence[u1]]
    LinearRecurrence[{4,-3,1,0,-1}, {1,1,3,9,27}, 30] (* G. C. Greubel, Jan 11 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((x^2-x+1)*(x^2+2*x-1)/((1-x)*(x^4+x^3+3*x -1))) \\ G. C. Greubel, Jan 11 2019
    
  • Sage
    ((x^2-x+1)*(x^2+2*x-1)/((1-x)*(x^4+x^3+3*x-1))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 11 2019
    

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3) - a(n-5).
G.f.: (x^2-x+1)*(x^2+2*x-1) / ( (1-x)*(x^4+x^3+3*x-1) ). - R. J. Mathar, Jul 13 2011

A192910 Coefficient of x in the reduction by (x^2 -> x + 1) of the polynomial p(n,x) defined below at Comments.

Original entry on oeis.org

0, 1, 4, 13, 42, 133, 418, 1311, 4110, 12883, 40380, 126563, 396684, 1243317, 3896896, 12213937, 38281814, 119985657, 376067806, 1178699171, 3694364986, 11579148423, 36292212248, 113749700903, 356522616120, 1117439209033, 3502359540252
Offset: 0

Views

Author

Clark Kimberling, Jul 12 2011

Keywords

Comments

The titular polynomial is defined by p(n,x) = (x^2)*p(n-1,x) + x*p(n-2,x) + 1, with p(0,x) = 1, p(1,x) = x + 1.

Crossrefs

Programs

  • GAP
    a:=[0,1,4,13,42];; for n in [6..30] do a[n]:=4*a[n-1]-3*a[n-2] + a[n-3]-a[n-5]; od; a; # G. C. Greubel, Jan 12 2019
  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!( x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x-x^3-x^4)) )); // G. C. Greubel, Jan 12 2019
    
  • Mathematica
    (See A192909.)
    LinearRecurrence[{4,-3,1,0,-1}, {0,1,4,13,42}, 30] (* G. C. Greubel, Jan 12 2019 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x -x^3-x^4)))) \\ G. C. Greubel, Jan 12 2019
    
  • Sage
    (x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x-x^3-x^4))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 12 2019
    

Formula

a(n) = 4*a(n-1) - 3*a(n-2) + a(n-3) - a(n-5).
G.f.: x*(1+x)*(1-x+x^2)/((1-x)*(1-3*x-x^3-x^4)). - R. J. Mathar, Jul 13 2011

A194032 Natural interspersion of the squares (1,4,9,16,25,...), a rectangular array, by antidiagonals.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 16, 10, 6, 7, 25, 17, 11, 12, 8, 36, 26, 18, 19, 13, 14, 49, 37, 27, 28, 20, 21, 15, 64, 50, 38, 39, 29, 30, 22, 23, 81, 65, 51, 52, 40, 41, 31, 32, 24, 100, 82, 66, 67, 53, 54, 42, 43, 33, 34, 121, 101, 83, 84, 68, 69, 55, 56, 44, 45
Offset: 1

Views

Author

Clark Kimberling, Aug 12 2011

Keywords

Comments

See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194032 is a permutation of the positive integers; its inverse is A194033.

Examples

			Northwest corner:
  1...4...9...16...25
  2...5...10..17...26
  3...6...11..18...27
  7...12..19..28...39
  8...13..20..29...40
		

Crossrefs

Programs

  • Mathematica
    z = 30;
    c[k_] := k^2;
    c = Table[c[k], {k, 1, z}]  (* A000290 *)
    f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]] (* A071797 *)
    f = Table[f[n], {n, 1, 255}]
    r[n_] := Flatten[Position[f, n]]
    t[n_, k_] := r[n][[k]]
    TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
    p = Flatten[Table[t[k, n - k + 1], {n, 1, 14}, {k, 1, n}]] (* A194032 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]] (* A194033 *)

Formula

T(n, k) = (k + max(floor(n/2)-1,0))^2 + n - 1. - Zhuorui He, Jul 08 2025

A194036 Natural interspersion of A028872, a rectangular array, by antidiagonals.

Original entry on oeis.org

1, 6, 2, 13, 7, 3, 22, 14, 8, 4, 33, 23, 15, 9, 5, 46, 34, 24, 16, 10, 11, 61, 47, 35, 25, 17, 18, 12, 78, 62, 48, 36, 26, 27, 19, 20, 97, 79, 63, 49, 37, 38, 28, 29, 21, 118, 98, 80, 64, 50, 51, 39, 40, 30, 31, 141, 119, 99, 81, 65, 66, 52, 53, 41, 42, 32, 166, 142
Offset: 1

Views

Author

Clark Kimberling, Aug 12 2011

Keywords

Comments

See A194029 for definitions of natural fractal sequence and natural interspersion. Every positive integer occurs exactly once (and every pair of rows intersperse), so that as a sequence, A194036 is a permutation of the positive integers; its inverse is A194037.

Examples

			Northwest corner:
1...6...13...22...33
2...7...14...23...34
3...8...15...24...35
4...9...16...25...36
5...10..17...26...37
11..18..27...38...51
		

Crossrefs

Programs

  • Mathematica
    z = 30;
    c[k_] := k^2 + 2 k - 2;
    c = Table[c[k], {k, 1, z}]  (* A028872 *)
    f[n_] := If[MemberQ[c, n], 1, 1 + f[n - 1]]
    f = Table[f[n], {n, 1, 255}]  (* A071797 *)
    r[n_] := Flatten[Position[f, n]]
    t[n_, k_] := r[n][[k]]
    TableForm[Table[t[n, k], {n, 1, 7}, {k, 1, 7}]]
    p = Flatten[Table[t[k, n - k + 1], {n, 1, 13}, {k, 1, n}]]  (* A194036 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 70}]]  (* A194037 *)
Previous Showing 11-20 of 31 results. Next