cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A152760 4 times 9-gonal numbers: a(n) = 2*n*(7*n-5).

Original entry on oeis.org

0, 4, 36, 96, 184, 300, 444, 616, 816, 1044, 1300, 1584, 1896, 2236, 2604, 3000, 3424, 3876, 4356, 4864, 5400, 5964, 6556, 7176, 7824, 8500, 9204, 9936, 10696, 11484, 12300, 13144, 14016, 14916, 15844, 16800, 17784, 18796, 19836, 20904, 22000, 23124
Offset: 0

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 4, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. The square spiral is related to the primitive Pythagorean triple [3, 4, 5]. - Omar E. Pol, Oct 13 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 - 10*n = 4*A001106(n) = 2*A139268(n).
a(n) = a(n-1) + 28*n - 24 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 4*x*(1+6*x)/(1-x)^3. (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 2*exp(x)*x*(2 + 7*x).
a(n) = n + A195021(n). (End)

A158482 a(n) = 14*n^2 + 1.

Original entry on oeis.org

15, 57, 127, 225, 351, 505, 687, 897, 1135, 1401, 1695, 2017, 2367, 2745, 3151, 3585, 4047, 4537, 5055, 5601, 6175, 6777, 7407, 8065, 8751, 9465, 10207, 10977, 11775, 12601, 13455, 14337, 15247, 16185, 17151, 18145, 19167, 20217, 21295, 22401
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (14*n^2 + 1)^2 - (49*n^2 + 7)*(2*n)^2 = 1 can be written as a(n)^2 - A158481(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 15, in the direction 15, 57, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Programs

  • Magma
    I:=[15, 57, 127]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{15,57,127},50]
  • PARI
    a(n) = 14*n^2+1;

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(15+12*x+x^2)/(1-x)^3.
From Amiram Eldar, Feb 05 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 - (Pi/sqrt(14))*coth(Pi/sqrt(14)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(14))*csch(Pi/sqrt(14)))/2.
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(14))*sinh(Pi/sqrt(7)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(14))*csch(Pi/sqrt(14)). (End)

A158485 a(n) = 14*n^2 - 1.

Original entry on oeis.org

13, 55, 125, 223, 349, 503, 685, 895, 1133, 1399, 1693, 2015, 2365, 2743, 3149, 3583, 4045, 4535, 5053, 5599, 6173, 6775, 7405, 8063, 8749, 9463, 10205, 10975, 11773, 12599, 13453, 14335, 15245, 16183, 17149, 18143, 19165, 20215, 21293, 22399
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (14*n^2-1)^2-(49*n^2-7)*(2*n)^2=1 can be written as a(n)^2-A158484(n)*A005843(n)^2=1.
Sequence found by reading the line from 13, in the direction 13, 55,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Programs

  • Magma
    I:=[13, 55, 125]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{13,55,125},50]
  • PARI
    a(n) = 14*n^2-1

Formula

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f: x*(-13-16*x+x^2)/(x-1)^3.
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(14))*cot(Pi/sqrt(14)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(14))*csc(Pi/sqrt(14)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(14))*csc(Pi/sqrt(14)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(14))*sin(Pi/sqrt(7))/sqrt(2). (End)

A195025 a(n) = n*(14*n + 3).

Original entry on oeis.org

0, 17, 62, 135, 236, 365, 522, 707, 920, 1161, 1430, 1727, 2052, 2405, 2786, 3195, 3632, 4097, 4590, 5111, 5660, 6237, 6842, 7475, 8136, 8825, 9542, 10287, 11060, 11861, 12690, 13547, 14432, 15345, 16286, 17255, 18252, 19277, 20330, 21411, 22520, 23657, 24822, 26015
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 17, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
a(k) is a square for k = (3/56)*((449 + 120*sqrt(14))^n + (449 - 120*sqrt(14))^n - 2). - Bruno Berselli, Oct 18 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 3*n.
G.f.: x*(17+11*x)/(1-x)^3. - Bruno Berselli, Oct 18 2011
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(17 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195033 Multiples of 21 and of 20 interleaved: a(2n-1) = 21n, a(2n) = 20n.

Original entry on oeis.org

21, 20, 42, 40, 63, 60, 84, 80, 105, 100, 126, 120, 147, 140, 168, 160, 189, 180, 210, 200, 231, 220, 252, 240, 273, 260, 294, 280, 315, 300, 336, 320, 357, 340, 378, 360, 399, 380, 420, 400, 441, 420, 462, 440, 483, 460, 504, 480, 525, 500, 546, 520, 567, 540
Offset: 1

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

First differences of A195034.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [21, 20, 29]. Zero together with partial sums give A195034, the vertices of the spiral.

Crossrefs

Programs

Formula

From Bruno Berselli, Sep 29 2011: (Start)
G.f.: x*(21+20*x)/((1-x)^2*(1+x)^2).
a(n) = A010693(n)*A010718(n)*A029578(n+1) = (41*n-(n+21)*(-1)^n+21)/4.
a(n) = 2*a(n-2) - a(n-4). (End)

Extensions

More terms from Bruno Berselli, Sep 29 2011

A195031 Multiples of 5 and of 12 interleaved: a(2n-1) = 5n, a(2n) = 12n.

Original entry on oeis.org

5, 12, 10, 24, 15, 36, 20, 48, 25, 60, 30, 72, 35, 84, 40, 96, 45, 108, 50, 120, 55, 132, 60, 144, 65, 156, 70, 168, 75, 180, 80, 192, 85, 204, 90, 216, 95, 228, 100, 240, 105, 252, 110, 264, 115, 276, 120, 288, 125, 300, 130, 312, 135, 324, 140, 336, 145, 348
Offset: 1

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

First differences of A195032.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [5, 12, 13]. Zero together with partial sums give A195032, the vertices of the spiral.

Crossrefs

Programs

  • Magma
    &cat[[5*n, 12*n]: n in [1..27]];  // Bruno Berselli, Sep 30 2011
    
  • Mathematica
    With[{nn=30},Riffle[5Range[nn],12Range[nn]]] (* or *) LinearRecurrence[ {0,2,0,-1},{5,12,10,24},60] (* Harvey P. Dale, Aug 18 2012 *)
  • PARI
    a(n)=(n+1)\2*if(n%2,5,12) \\ Charles R Greathouse IV, Oct 07 2015

Formula

From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(5+12*x)/((1-x)^2*(1+x)^2).
a(n) = ((17+7*(-1)^n)/2)*((2*n-(-1)^n+1)/4) = (17*n+(7*n-5)*(-1)^n+5)/4.
a(n)*a(n+1) = a(10*s), where s is A002620(n+1).
a(n) = 2*a(n-2) - a(n-4). (End)

Extensions

More terms from Bruno Berselli, Sep 30 2011

A195035 Multiples of 15 and of 8 interleaved: a(2n-1) = 15n, a(2n) = 8n.

Original entry on oeis.org

15, 8, 30, 16, 45, 24, 60, 32, 75, 40, 90, 48, 105, 56, 120, 64, 135, 72, 150, 80, 165, 88, 180, 96, 195, 104, 210, 112, 225, 120, 240, 128, 255, 136, 270, 144, 285, 152, 300, 160, 315, 168, 330, 176, 345, 184, 360, 192, 375, 200, 390, 208, 405, 216
Offset: 1

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

First differences of A195036.
a(n) is also the length of the n-th edge of a square spiral in which the first two edges are the legs of the primitive Pythagorean triple [15, 8, 17]. Zero together with partial sums give A195036; the vertices of the spiral.

Crossrefs

Programs

Formula

From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(15+8*x)/((1-x)^2*(1+x)^2).
a(n) = A010686(n)*A010706(n-1)*A004526(n+1) = (23*n-(7*n+15)*(-1)^n+15)/4.
a(n) = 2*a(n-2) - a(n-4).
a(-n) = -a(A014681(n-1)). (End)

A033572 a(n) = (2*n+1)*(7*n+1).

Original entry on oeis.org

1, 24, 75, 154, 261, 396, 559, 750, 969, 1216, 1491, 1794, 2125, 2484, 2871, 3286, 3729, 4200, 4699, 5226, 5781, 6364, 6975, 7614, 8281, 8976, 9699, 10450, 11229, 12036, 12871, 13734, 14625, 15544, 16491, 17466, 18469, 19500, 20559, 21646, 22761, 23904, 25075, 26274, 27501, 28756
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 24,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Bisection of A001106.

Programs

Formula

a(n) = a(n-1) + 28*n - 5 for n>0, a(0)=1. - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 21*x + 6*x^2)/(1-x)^3.
E.g.f.: (1 + 23*x + 14*x^2)*exp(x). (End)
Sum 1/a(n) = -gamma/5 -2*log(2)/5 -psi(1/7)/5 = 1.0800940432405839438217..., gamma=A001620, psi(1/7) = -A354627. - R. J. Mathar, May 07 2024

A195026 a(n) = 7*n*(2*n + 1).

Original entry on oeis.org

0, 21, 70, 147, 252, 385, 546, 735, 952, 1197, 1470, 1771, 2100, 2457, 2842, 3255, 3696, 4165, 4662, 5187, 5740, 6321, 6930, 7567, 8232, 8925, 9646, 10395, 11172, 11977, 12810, 13671, 14560, 15477, 16422, 17395, 18396, 19425, 20482, 21567, 22680, 23821, 24990
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 21, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. Semi-diagonal opposite to A195320 in the same square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
Sum of the numbers from 6*n to 8*n. - Wesley Ivan Hurt, Dec 23 2015

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 7*n.
a(n) = 7*A014105(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 7*x*(3+x)/(1-x)^3. (End)
a(n) = Sum_{i=6*n..8*n} i. - Wesley Ivan Hurt, Dec 23 2015
E.g.f.: 7*exp(x)*x*(3 + 2*x). - Elmo R. Oliveira, Dec 29 2024

A195030 a(n) = (n-2)*(14*n-39) for n > 2, otherwise a(n) = n.

Original entry on oeis.org

0, 1, 2, 3, 34, 93, 180, 295, 438, 609, 808, 1035, 1290, 1573, 1884, 2223, 2590, 2985, 3408, 3859, 4338, 4845, 5380, 5943, 6534, 7153, 7800, 8475, 9178, 9909, 10668, 11455, 12270, 13113, 13984, 14883, 15810, 16765, 17748, 18759, 19798, 20865, 21960, 23083
Offset: 0

Views

Author

Omar E. Pol, Oct 18 2011

Keywords

Comments

Union of [1, 2] and A195021.
Sequence found by reading the line from 0, in the direction 0, 1,..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

G.f.: x*(1-x+30*x^3-2*x^4)/(1-x)^3. - Bruno Berselli, Oct 18 2011

Extensions

Both sequence (based on A195021) and definition suggested by Bruno Berselli, Oct 18 2011
Previous Showing 11-20 of 23 results. Next