cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A195021 a(n) = n*(14*n - 11).

Original entry on oeis.org

0, 3, 34, 93, 180, 295, 438, 609, 808, 1035, 1290, 1573, 1884, 2223, 2590, 2985, 3408, 3859, 4338, 4845, 5380, 5943, 6534, 7153, 7800, 8475, 9178, 9909, 10668, 11455, 12270, 13113, 13984, 14883, 15810, 16765, 17748, 18759, 19798, 20865, 21960, 23083, 24234, 25413
Offset: 0

Views

Author

Omar E. Pol, Sep 07 2011

Keywords

Comments

Sequence found by reading the first two vertices [0, 3] together with the line from 34, in the direction 34, 93, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020, which is related to the primitive Pythagorean triple [3, 4, 5]. For another version see A195030.

Crossrefs

Cf. numbers of the form n*(n*k - k + 6)/2, this sequence is the case k=28: see Comments lines of A226492.

Programs

Formula

a(n) = 14*n^2 - 11*n.
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(3+25*x)/(1-x)^3. (End)
E.g.f.: exp(x)*x*(3 + 14*x). - Elmo R. Oliveira, Dec 30 2024

Extensions

Edited by Bruno Berselli, Oct 18 2011

A195023 a(n) = 14*n^2 - 4*n.

Original entry on oeis.org

0, 10, 48, 114, 208, 330, 480, 658, 864, 1098, 1360, 1650, 1968, 2314, 2688, 3090, 3520, 3978, 4464, 4978, 5520, 6090, 6688, 7314, 7968, 8650, 9360, 10098, 10864, 11658, 12480, 13330, 14208, 15114, 16048, 17010, 18000, 19018, 20064, 21138, 22240, 23370, 24528, 25714
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 10, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].

Crossrefs

Programs

Formula

a(n) = 2*A135703(n). - Bruno Berselli, Oct 13 2011
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(5+9*x)/(1-x)^3. (End)
E.g.f.: 2*exp(x)*x*(5 + 7*x). - Elmo R. Oliveira, Dec 30 2024

Extensions

Corrected by Vincenzo Librandi, Oct 14 2011

A195024 a(n) = n*(14*n - 1).

Original entry on oeis.org

0, 13, 54, 123, 220, 345, 498, 679, 888, 1125, 1390, 1683, 2004, 2353, 2730, 3135, 3568, 4029, 4518, 5035, 5580, 6153, 6754, 7383, 8040, 8725, 9438, 10179, 10948, 11745, 12570, 13423, 14304, 15213, 16150, 17115, 18108, 19129, 20178, 21255, 22360, 23493, 24654, 25843
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Related to the primitive Pythagorean triple [3, 4, 5].
Sequence found by reading the line from 0, in the direction 0, 13, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-diagonals of the square spiral.
Also sequence found by reading the line from 0, in the direction 0, 13, ..., in the square spiral whose vertices are the generalized 9-gonal numbers A118277. - Omar E. Pol, Jul 28 2012

Crossrefs

Programs

Formula

a(n) = 14*n^2 - n.
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: x*(13+15*x)/(1-x)^3. (End)
E.g.f.: exp(x)*x*(13 + 14*x). - Elmo R. Oliveira, Jan 12 2025

A152760 4 times 9-gonal numbers: a(n) = 2*n*(7*n-5).

Original entry on oeis.org

0, 4, 36, 96, 184, 300, 444, 616, 816, 1044, 1300, 1584, 1896, 2236, 2604, 3000, 3424, 3876, 4356, 4864, 5400, 5964, 6556, 7176, 7824, 8500, 9204, 9936, 10696, 11484, 12300, 13144, 14016, 14916, 15844, 16800, 17784, 18796, 19836, 20904, 22000, 23124
Offset: 0

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 4, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. The square spiral is related to the primitive Pythagorean triple [3, 4, 5]. - Omar E. Pol, Oct 13 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 - 10*n = 4*A001106(n) = 2*A139268(n).
a(n) = a(n-1) + 28*n - 24 (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
From Colin Barker, Apr 09 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 4*x*(1+6*x)/(1-x)^3. (End)
From Elmo R. Oliveira, Dec 27 2024: (Start)
E.g.f.: 2*exp(x)*x*(2 + 7*x).
a(n) = n + A195021(n). (End)

A195034 Vertex number of a square spiral in which the length of the first two edges are the legs of the primitive Pythagorean triple [21, 20, 29]. The edges of the spiral have length A195033.

Original entry on oeis.org

0, 21, 41, 83, 123, 186, 246, 330, 410, 515, 615, 741, 861, 1008, 1148, 1316, 1476, 1665, 1845, 2055, 2255, 2486, 2706, 2958, 3198, 3471, 3731, 4025, 4305, 4620, 4920, 5256, 5576, 5933, 6273, 6651, 7011, 7410, 7790, 8210, 8610, 9051, 9471
Offset: 0

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

Zero together with partial sums of A195033.
The only primes in the sequence are 41 and 83 since a(n) = (1/2)*((2*n+(-1)^n+3)/4)*((82*n-43*(-1)^n+43)/4). - Bruno Berselli, Oct 12 2011
The spiral contains infinitely many Pythagorean triples in which the hypotenuses on the main diagonal are the positives multiples of 29 (Cf. A195819). The vertices on the main diagonal are the numbers A195038 = (21+20)*A000217 = 41*A000217, where both 21 and 20 are the first two edges in the spiral. The distance "a" between nearest edges that are perpendicular to the initial edge of the spiral is 21, while the distance "b" between nearest edges that are parallel to the initial edge is 20, so the distance "c" between nearest vertices on the same axis is 29 because from the Pythagorean theorem we can write c = (a^2+b^2)^(1/2) = sqrt(21^2+20^2) = sqrt(441+400) = sqrt(841) = 29. - Omar E. Pol, Oct 12 2011

Crossrefs

Programs

  • Magma
    [(2*n*(41*n+83)-(2*n+43)*(-1)^n+43)/16: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
    
  • Mathematica
    LinearRecurrence[{1,2,-2,-1,1},{0,21,41,83,123},50] (* Harvey P. Dale, May 02 2012 *)
  • PARI
    concat(0, Vec(x*(21+20*x)/((1+x)^2*(1-x)^3) + O(x^60))) \\ Michel Marcus, Mar 08 2016

Formula

From Bruno Berselli, Oct 12 2011: (Start)
G.f.: x*(21+20*x)/((1+x)^2*(1-x)^3).
a(n) = (2*n*(41*n+83)-(2*n+43)*(-1)^n+43)/16.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5).
a(n)-a(-n-2) = A142150(n+1). (End)

A158482 a(n) = 14*n^2 + 1.

Original entry on oeis.org

15, 57, 127, 225, 351, 505, 687, 897, 1135, 1401, 1695, 2017, 2367, 2745, 3151, 3585, 4047, 4537, 5055, 5601, 6175, 6777, 7407, 8065, 8751, 9465, 10207, 10977, 11775, 12601, 13455, 14337, 15247, 16185, 17151, 18145, 19167, 20217, 21295, 22401
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (14*n^2 + 1)^2 - (49*n^2 + 7)*(2*n)^2 = 1 can be written as a(n)^2 - A158481(n)*A005843(n)^2 = 1.
Sequence found by reading the line from 15, in the direction 15, 57, ..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Programs

  • Magma
    I:=[15, 57, 127]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{15,57,127},50]
  • PARI
    a(n) = 14*n^2+1;

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: x*(15+12*x+x^2)/(1-x)^3.
From Amiram Eldar, Feb 05 2021: (Start)
Sum_{n>=0} 1/a(n) = (1 - (Pi/sqrt(14))*coth(Pi/sqrt(14)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(14))*csch(Pi/sqrt(14)))/2.
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(14))*sinh(Pi/sqrt(7)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(14))*csch(Pi/sqrt(14)). (End)

A158485 a(n) = 14*n^2 - 1.

Original entry on oeis.org

13, 55, 125, 223, 349, 503, 685, 895, 1133, 1399, 1693, 2015, 2365, 2743, 3149, 3583, 4045, 4535, 5053, 5599, 6173, 6775, 7405, 8063, 8749, 9463, 10205, 10975, 11773, 12599, 13453, 14335, 15245, 16183, 17149, 18143, 19165, 20215, 21293, 22399
Offset: 1

Views

Author

Vincenzo Librandi, Mar 20 2009

Keywords

Comments

The identity (14*n^2-1)^2-(49*n^2-7)*(2*n)^2=1 can be written as a(n)^2-A158484(n)*A005843(n)^2=1.
Sequence found by reading the line from 13, in the direction 13, 55,..., in the square spiral whose vertices are the generalized enneagonal numbers A118277. Also sequence found by reading the same line in the square spiral whose edges have length A195019 and whose vertices are the numbers A195020. - Omar E. Pol, Sep 13 2011

Crossrefs

Programs

  • Magma
    I:=[13, 55, 125]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]];
    
  • Mathematica
    LinearRecurrence[{3,-3,1},{13,55,125},50]
  • PARI
    a(n) = 14*n^2-1

Formula

a(n) = 3*a(n-1) -3*a(n-2) +a(n-3).
G.f: x*(-13-16*x+x^2)/(x-1)^3.
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(14))*cot(Pi/sqrt(14)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(14))*csc(Pi/sqrt(14)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(14))*csc(Pi/sqrt(14)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(14))*sin(Pi/sqrt(7))/sqrt(2). (End)

A195025 a(n) = n*(14*n + 3).

Original entry on oeis.org

0, 17, 62, 135, 236, 365, 522, 707, 920, 1161, 1430, 1727, 2052, 2405, 2786, 3195, 3632, 4097, 4590, 5111, 5660, 6237, 6842, 7475, 8136, 8825, 9542, 10287, 11060, 11861, 12690, 13547, 14432, 15345, 16286, 17255, 18252, 19277, 20330, 21411, 22520, 23657, 24822, 26015
Offset: 0

Views

Author

Omar E. Pol, Oct 13 2011

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 17, ..., in the Pythagorean spiral whose edges have length A195019 and whose vertices are the numbers A195020. This is the one of the semi-axis of the square spiral, which is related to the primitive Pythagorean triple [3, 4, 5].
a(k) is a square for k = (3/56)*((449 + 120*sqrt(14))^n + (449 - 120*sqrt(14))^n - 2). - Bruno Berselli, Oct 18 2011

Crossrefs

Programs

Formula

a(n) = 14*n^2 + 3*n.
G.f.: x*(17+11*x)/(1-x)^3. - Bruno Berselli, Oct 18 2011
From Elmo R. Oliveira, Dec 30 2024: (Start)
E.g.f.: exp(x)*x*(17 + 14*x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

Extensions

Name suggested by Bruno Berselli, Oct 13 2011

A195032 Vertex number of a square spiral in which the length of the first two edges are the legs of the primitive Pythagorean triple [5, 12, 13]. The edges of the spiral have length A195031.

Original entry on oeis.org

0, 5, 17, 27, 51, 66, 102, 122, 170, 195, 255, 285, 357, 392, 476, 516, 612, 657, 765, 815, 935, 990, 1122, 1182, 1326, 1391, 1547, 1617, 1785, 1860, 2040, 2120, 2312, 2397, 2601, 2691, 2907, 3002, 3230, 3330, 3570, 3675, 3927, 4037, 4301, 4416, 4692
Offset: 0

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

Zero together with partial sums of A195031.
The spiral contains infinitely many Pythagorean triples in which the hypotenuses on the main diagonal are the positives multiples of 13 (cf. A008595). The vertices on the main diagonal are the numbers A195037 = (5+12)*A000217 = 17*A000217, where both 5 and 12 are the first two edges in the spiral. The distance "a" between nearest edges that are perpendicular to the initial edge of the spiral is 5, while the distance "b" between nearest edges that are parallel to the initial edge is 12, so the distance "c" between nearest vertices on the same axis is 13 because from the Pythagorean theorem we can write c = (a^2 + b^2)^(1/2) = sqrt(5^2 + 12^2) = sqrt(25 + 144) = sqrt(169) = 13. - Omar E. Pol, Oct 12 2011

Crossrefs

Programs

  • Magma
    [(2*n*(17*n+27)+(14*n-3)*(-1)^n+3)/16: n in [0..50]]; // Vincenzo Librandi, Oct 14 2011
    
  • Mathematica
    a[n_] := (2 n (17 n + 27) + (14 n - 3)*(-1)^n + 3)/16; Array[a, 50, 0] (* Amiram Eldar, Nov 23 2018 *)
  • PARI
    vector(50, n, n--; (2*n*(17*n+27)+(14*n-3)*(-1)^n+3)/16) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    [(2*n*(17*n+27)+(14*n-3)*(-1)^n+3)/16 for n in range(50)] # G. C. Greubel, Nov 23 2018

Formula

From Bruno Berselli, Oct 13 2011: (Start)
G.f.: x*(5 + 12*x)/((1 + x)^2*(1 - x)^3).
a(n) = (1/2)*((2*n + (-1)^n + 3)/4)*((34*n - 3*(-1)^n+3)/4) = (2*n*(17*n + 27) + (14*n - 3)*(-1)^n + 3)/16.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)
E.g.f.: (1/16)*((3 + 88*x + 34*x^2)*exp(x) - (3 + 14*x)*exp(-x)). - Franck Maminirina Ramaharo, Nov 23 2018

A195036 Vertex number of a square spiral in which the length of the first two edges are the legs of the primitive Pythagorean triple [15, 8, 17]. The edges of the spiral have length A195035.

Original entry on oeis.org

0, 15, 23, 53, 69, 114, 138, 198, 230, 305, 345, 435, 483, 588, 644, 764, 828, 963, 1035, 1185, 1265, 1430, 1518, 1698, 1794, 1989, 2093, 2303, 2415, 2640, 2760, 3000, 3128, 3383, 3519, 3789, 3933, 4218, 4370, 4670, 4830, 5145, 5313, 5643, 5819, 6164, 6348
Offset: 0

Views

Author

Omar E. Pol, Sep 12 2011

Keywords

Comments

Zero together with partial sums of A195035.
The only primes in the sequence are 23 and 53 since a(n) = (1/2)*((2*n+(-1)^n+3)/4)*((46*n-37*(-1)^n+37)/4). - Bruno Berselli, Sep 30 2011
The spiral contains infinitely many Pythagorean triples in which the hypotenuses on the main diagonal are the positives multiples of 17 (Cf. A008599). The vertices on the main diagonal are the numbers A195039 = (15+8)*A000217 = 23*A000217, where both 15 and 8 are the first two edges in the spiral. The distance "a" between nearest edges that are perpendicular to the initial edge of the spiral is 15, while the distance "b" between nearest edges that are parallel to the initial edge is 8, so the distance "c" between nearest vertices on the same axis is 17 because from the Pythagorean theorem we can write c = (a^2+b^2)^(1/2) = sqrt(15^2+8^2) = sqrt(225+64) = sqrt(289) = 17. - Omar E. Pol, Oct 12 2011

Crossrefs

Programs

Formula

From Bruno Berselli, Sep 30 2011: (Start)
G.f.: x*(15+8*x)/((1+x)^2*(1-x)^3).
a(n) = (2*n*(23*n+53) - (14*n+37)*(-1)^n + 37)/16.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). (End)

Extensions

More terms from Bruno Berselli, Sep 30 2011
Previous Showing 11-20 of 27 results. Next