A195532
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(5).
Original entry on oeis.org
8, 5, 84, 2400, 1691, 11480, 118455, 352692, 1401961, 1663145124, 1802526192, 15798984680, 297278169720, 1479041362764, 1551248530483, 42254295673488, 1445285680561323, 28154300465964144, 49087267967218280, 373205366478956820
Offset: 1
-
r = Sqrt[5]; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195532, A195533 *)
Sqrt[a^2 + b^2] (* A195534 *)
(* by Peter J. C. Moses, Sep 02 2011 *)
A195535
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(6).
Original entry on oeis.org
5, 1020, 2247, 2633277900, 2640162496, 638843546289, 1396487515808, 6103353023795, 21860678072520, 82495605773137, 29466852345019792, 34041728665663572, 292320946605948260, 262936589866701605, 3964118460886936896
Offset: 1
-
r = Sqrt[6]; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195535, A195536 *)
Sqrt[a^2 + b^2] (* A195537 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195538
Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(8).
Original entry on oeis.org
5, 12, 145, 420, 4901, 14280, 166465, 485112, 5654885, 16479540, 192099601, 559819260, 6525731525, 19017375312, 221682772225, 646030941360, 7530688524101, 21946034630940, 255821727047185, 745519146510612, 8690408031080165
Offset: 1
-
r = Sqrt[8]; z = 24;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195538, A195539 *)
Sqrt[a^2 + b^2] (* A195540 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195541
Denominators a(n) of Pythagorean approximations b(n)/a(n) to e.
Original entry on oeis.org
5, 12, 44, 51, 280, 949, 103488, 133416, 4142957, 81015132, 141119360, 2339121011, 22104171804, 658972588452, 461228244281, 3140753982224, 7467448353120, 49702513350325, 3912991025369532, 130254818350668557, 177768662787348689760
Offset: 1
-
r = E; z = 23;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195541, A195542 *)
Sqrt[a^2 + b^2] (* A195543 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195544
Denominators a(n) of Pythagorean approximations b(n)/a(n) to Pi.
Original entry on oeis.org
12, 52, 315, 1044, 3296, 20919, 217620, 450296, 125510644, 138980066871, 289898680472, 3593636117787, 34812833117460, 1934468176818608, 1244148342635075, 86081645453428848, 8659539839551787053788, 138771143651019468539176
Offset: 1
-
r = Pi; z = 21;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195544, A195545 *)
Sqrt[a^2 + b^2] (* A195546 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195547
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/2.
Original entry on oeis.org
1, 4, 12, 15, 80, 208, 273, 1428, 3740, 4895, 25632, 67104, 87841, 459940, 1204140, 1576239, 8253296, 21607408, 28284465, 148099380, 387729212, 507544127, 2657535552, 6957518400, 9107509825, 47687540548, 124847601996, 163427632719, 855718194320, 2240299317520
Offset: 1
-
r = 1/2; z = 30;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195547, A195548 *)
Sqrt[a^2 + b^2] (* A195549 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Table[Numerator[2 Fibonacci[n] Fibonacci[n+1] / ( Fibonacci[n] + Fibonacci[n+1])], {n, 1, 40}] (* Vincenzo Librandi, Jul 21 2018 *)
A195549
Hypotenuses of primitive Pythagorean triples in A195547 and A195548.
Original entry on oeis.org
1, 5, 13, 17, 89, 233, 305, 1597, 4181, 5473, 28657, 75025, 98209, 514229, 1346269, 1762289, 9227465, 24157817, 31622993, 165580141, 433494437, 567451585, 2971215073, 7778742049, 10182505537, 53316291173, 139583862445, 182717648081
Offset: 1
A195550
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 3/2.
Original entry on oeis.org
3, 60, 660, 3597, 78480, 856080, 4669203, 101866380, 1111191780, 6060621597, 132222483360, 1442326073760, 7866682164003, 171624681534300, 1872138132549300, 10210947388253997, 222768704409038640, 2430033853722917040
Offset: 1
-
r = 3/2; z = 21;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195550, A195551 *)
Sqrt[a^2 + b^2] (* A195552 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195553
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 5/2.
Original entry on oeis.org
5, 260, 7020, 94635, 5103280, 137599280, 1855038645, 100034487540, 2697221086300, 36362467421275, 1960876019662560, 52870927596046560, 712777084536797285, 38437091637391006820, 1036375920040483589580, 13971856374727832955915
Offset: 1
-
r = 5/2; z = 18;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195553, A195554 *)
Sqrt[a^2 + b^2] (* A195555 *)
(* Peter J. C. Moses, Sep 02 2011 *)
A195556
Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/3.
Original entry on oeis.org
1, 12, 24, 35, 468, 900, 1333, 17760, 34188, 50615, 674424, 1298232, 1922041, 25610340, 49298640, 72986939, 972518508, 1872050076, 2771581645, 36930092952, 71088604260, 105247115567, 1402371013680, 2699494911792, 3996618809905
Offset: 1
-
r = 1/3; z = 27;
p[{f_, n_}] := (#1[[2]]/#1[[
1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
Array[FromContinuedFraction[
ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
{a, b} = ({Denominator[#1], Numerator[#1]} &)[
p[{r, z}]] (* A195556, A195557 *)
Sqrt[a^2 + b^2] (* A195558 *)
(* Peter J. C. Moses, Sep 02 2011 *)
Comments