cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 79 results. Next

A195532 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(5).

Original entry on oeis.org

8, 5, 84, 2400, 1691, 11480, 118455, 352692, 1401961, 1663145124, 1802526192, 15798984680, 297278169720, 1479041362764, 1551248530483, 42254295673488, 1445285680561323, 28154300465964144, 49087267967218280, 373205366478956820
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[5]; z = 24;
    p[{f_,  n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195532, A195533 *)
    Sqrt[a^2 + b^2] (* A195534 *)
    (* by Peter J. C. Moses, Sep 02 2011 *)

A195535 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(6).

Original entry on oeis.org

5, 1020, 2247, 2633277900, 2640162496, 638843546289, 1396487515808, 6103353023795, 21860678072520, 82495605773137, 29466852345019792, 34041728665663572, 292320946605948260, 262936589866701605, 3964118460886936896
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = Sqrt[6]; z = 18;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195535, A195536 *)
    Sqrt[a^2 + b^2] (* A195537 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

A195538 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(8).

Original entry on oeis.org

5, 12, 145, 420, 4901, 14280, 166465, 485112, 5654885, 16479540, 192099601, 559819260, 6525731525, 19017375312, 221682772225, 646030941360, 7530688524101, 21946034630940, 255821727047185, 745519146510612, 8690408031080165
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.
Conjecture: a(n) = 35*a(n-2) - 35*a(n-4) + a(n-6) with bisections A098602 and A076218. - R. J. Mathar, Sep 21 2011

Crossrefs

Programs

  • Mathematica
    r = Sqrt[8]; z = 24;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195538, A195539 *)
    Sqrt[a^2 + b^2] (* A195540 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

A195541 Denominators a(n) of Pythagorean approximations b(n)/a(n) to e.

Original entry on oeis.org

5, 12, 44, 51, 280, 949, 103488, 133416, 4142957, 81015132, 141119360, 2339121011, 22104171804, 658972588452, 461228244281, 3140753982224, 7467448353120, 49702513350325, 3912991025369532, 130254818350668557, 177768662787348689760
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = E; z = 23;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195541, A195542 *)
    Sqrt[a^2 + b^2] (* A195543 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

A195544 Denominators a(n) of Pythagorean approximations b(n)/a(n) to Pi.

Original entry on oeis.org

12, 52, 315, 1044, 3296, 20919, 217620, 450296, 125510644, 138980066871, 289898680472, 3593636117787, 34812833117460, 1934468176818608, 1244148342635075, 86081645453428848, 8659539839551787053788, 138771143651019468539176
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = Pi; z = 21;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195544, A195545 *)
    Sqrt[a^2 + b^2] (* A195546 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

A195547 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/2.

Original entry on oeis.org

1, 4, 12, 15, 80, 208, 273, 1428, 3740, 4895, 25632, 67104, 87841, 459940, 1204140, 1576239, 8253296, 21607408, 28284465, 148099380, 387729212, 507544127, 2657535552, 6957518400, 9107509825, 47687540548, 124847601996, 163427632719, 855718194320, 2240299317520
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for a discussion and references.
a(n) is the numerator of the harmonic mean of F(n) and F(n+1), where F = A000045 (Fibonacci numbers). Example: 2*F(9)*F(10)/(F(9)+F(10)) = 2*34*55/(34+55) = 3740/89, therefore a(9) = 3740. - Francesco Daddi, Jul 04 2018

Crossrefs

Programs

  • Mathematica
    r = 1/2; z = 30;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195547, A195548 *)
    Sqrt[a^2 + b^2] (* A195549 *)
    (* Peter J. C. Moses, Sep 02 2011 *)
    Table[Numerator[2 Fibonacci[n] Fibonacci[n+1] / ( Fibonacci[n] + Fibonacci[n+1])], {n, 1, 40}] (* Vincenzo Librandi, Jul 21 2018 *)

Formula

a(n) = 2*F(n)*F(n+1)/(2-((n+2)^2 mod 3)), where F(n)=Fibonacci(n). - Gary Detlefs, Oct 15 2011
Empirical G.f.: x*(1+4*x+12*x^2-2*x^3+12*x^4+4*x^5+x^6)/(1-17*x^3-17*x^6+x^9). - Colin Barker, Apr 15 2012

A195549 Hypotenuses of primitive Pythagorean triples in A195547 and A195548.

Original entry on oeis.org

1, 5, 13, 17, 89, 233, 305, 1597, 4181, 5473, 28657, 75025, 98209, 514229, 1346269, 1762289, 9227465, 24157817, 31622993, 165580141, 433494437, 567451585, 2971215073, 7778742049, 10182505537, 53316291173, 139583862445, 182717648081
Offset: 1

Views

Author

Clark Kimberling, Sep 20 2011

Keywords

Comments

See A195500 for discussion and list of related sequences; see A195547 for Mathematica program.

Crossrefs

Programs

  • Maple
    with(combinat):f:= n-> fibonacci(n):seq((f(n)^2+f(n+1)^2)/(2-((n+2)^2 mod 3)), n=1..25);

Formula

a(n) = (F(n)^2 + F(n+1)^2)/(2 - ((n+2)^2 mod 3)), F(n) = Fibonacci(n). - Gary Detlefs, Oct 14 2011
Conjectures from Colin Barker, Apr 08 2012: (Start)
a(n) = 18*a(n-3) - a(n-6).
G.f.: x*(1+5*x+13*x^2-x^3-x^4-x^5)/((1-3*x+x^2)*(1+3*x+8*x^2+3*x^3+x^4)). (End)
Conjecture: a(n) is the denominator of the reduced fraction (F(2*n+1)-2)/F(2*n+1), F(n) = Fibonacci(n). - Sébastien Labbé, May 06 2022

A195550 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 3/2.

Original entry on oeis.org

3, 60, 660, 3597, 78480, 856080, 4669203, 101866380, 1111191780, 6060621597, 132222483360, 1442326073760, 7866682164003, 171624681534300, 1872138132549300, 10210947388253997, 222768704409038640, 2430033853722917040
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = 3/2; z = 21;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195550, A195551 *)
    Sqrt[a^2 + b^2] (* A195552 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

A195553 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 5/2.

Original entry on oeis.org

5, 260, 7020, 94635, 5103280, 137599280, 1855038645, 100034487540, 2697221086300, 36362467421275, 1960876019662560, 52870927596046560, 712777084536797285, 38437091637391006820, 1036375920040483589580, 13971856374727832955915
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = 5/2; z = 18;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195553, A195554 *)
    Sqrt[a^2 + b^2] (* A195555 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

A195556 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/3.

Original entry on oeis.org

1, 12, 24, 35, 468, 900, 1333, 17760, 34188, 50615, 674424, 1298232, 1922041, 25610340, 49298640, 72986939, 972518508, 1872050076, 2771581645, 36930092952, 71088604260, 105247115567, 1402371013680, 2699494911792, 3996618809905
Offset: 1

Views

Author

Clark Kimberling, Sep 21 2011

Keywords

Comments

See A195500 for a discussion and references.

Crossrefs

Programs

  • Mathematica
    r = 1/3; z = 27;
    p[{f_, n_}] := (#1[[2]]/#1[[
          1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
             2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
         Array[FromContinuedFraction[
            ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
    {a, b} = ({Denominator[#1], Numerator[#1]} &)[
      p[{r, z}]]  (* A195556, A195557 *)
    Sqrt[a^2 + b^2] (* A195558 *)
    (* Peter J. C. Moses, Sep 02 2011 *)

Formula

Conjecture: a(n) = 37*a(n-3) + 37*a(n-6) - a(n-9). - R. J. Mathar, Sep 21 2011
Empirical g.f.: x*(x^6+12*x^5+24*x^4-2*x^3+24*x^2+12*x+1) / (x^9-37*x^6-37*x^3+1). - Colin Barker, Jun 04 2015
Previous Showing 11-20 of 79 results. Next