cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 85 results. Next

A301470 Signed recurrence over enriched r-trees: a(n) = (-1)^n + Sum_y Product_{i in y} a(y) where the sum is over all integer partitions of n - 1.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 3, 5, 9, 15, 27, 47, 87, 155, 288, 524, 983, 1813, 3434, 6396, 12174, 22891, 43810, 82925, 159432, 303559, 585966, 1121446, 2171341, 4172932, 8106485, 15635332, 30445899, 58925280, 115014681, 223210718, 436603718, 849480835, 1664740873
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
        end:
    a:= n-> `if`(n<2, 1-n, b(n-2$2)+b(n-1, n-2)):
    seq(a(n), n=0..45);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    a[n_]:=a[n]=(-1)^n+Sum[Times@@a/@y,{y,IntegerPartitions[n-1]}];
    Array[a,30]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1,
         If[i < 1, 0, b[n, i - 1] + a[i] b[n - i, Min[n - i, i]]]];
    a[n_] := If[n < 2, 1 - n, b[n - 2, n - 2] + b[n - 1, n - 2]];
    a /@ Range[0, 45] (* Jean-François Alcover, May 20 2021, after Alois P. Heinz *)

Formula

O.g.f.: 1/(1 + x) + x Product_{i > 0} 1/(1 - a(i) x^i).
a(n) = Sum_t (-1)^w(t) where the sum is over all enriched r-trees of size n and w(t) is the sum of leaves of t.

A302094 Number of relatively prime or monic twice-partitions of n.

Original entry on oeis.org

1, 3, 6, 10, 27, 35, 113, 170, 396, 641, 1649, 2318, 5905, 9112, 18678, 32529, 69094, 106210, 227480, 363433, 705210, 1196190, 2325023, 3724233, 7192245, 11915884, 21857887, 36597843, 67406158, 109594872, 201747847, 333400746, 591125465, 987069077, 1743223350
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime). Then a relatively prime or monic twice-partition of n is a choice of a relatively prime or monic partition of each part in a relatively prime or monic partition of n.

Examples

			The a(4) = 10 relatively prime or monic twice-partitions:
(4), (31), (211), (1111),
(3)(1), (21)(1), (111)(1),
(2)(1)(1), (11)(1)(1),
(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    ip[n_]:=ip[n]=Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&];
    Table[Sum[Times@@Length/@ip/@ptn,{ptn,ip[n]}],{n,10}]

A302915 Number of relatively prime enriched p-trees of weight n.

Original entry on oeis.org

1, 2, 4, 8, 28, 56, 256, 656, 2480, 6688, 30736, 73984, 366560, 1006720, 3966976, 12738560, 58427648, 148069632, 764473600, 2133585664, 8939502080, 28705390592, 136987259648, 356634376704, 1780025034240, 5455065263104, 23215437079552, 73123382895616
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime enriched p-tree of weight n is either a single node of weight n, or a finite sequence of two or more relatively prime enriched p-trees whose weights are weakly decreasing, relatively prime, and sum to n.

Examples

			The a(4) = 8 relatively prime enriched p-trees are 4, (31), ((21)1), (((11)1)1), ((111)1), (211), ((11)11), (1111). Missing from this list are the enriched p-trees ((11)(11)), ((11)2), (2(11)), (22).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=1+Sum[Times@@a/@y,{y,Rest[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]]}];
    Array[a,20]

A302916 Number of relatively prime p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 4, 11, 22, 74, 174, 530, 1302, 4713, 10639, 40877, 101795, 325609, 925733, 3432819, 8078511, 32542036, 82226383, 279096823, 795532677, 3066505569, 7374764180, 28946183035, 79313174765, 275507514909, 772692247626, 3049937788372, 7071057261148
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime p-tree of weight n is either a single node, or a finite sequence of two or more relatively prime p-trees whose weights are weakly decreasing, relatively prime, and sum to n.

Examples

			The a(4) = 4 relatively prime p-trees are (((oo)o)o), ((ooo)o), ((oo)oo), (oooo). Missing from this list is the p-tree ((oo)(oo)).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=If[n===1,1,Sum[Times@@a/@y,{y,Rest[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]]}]];
    Array[a,20]

A302917 Solution to a(1) = 1 and Sum_y Product_i a(y_i) = 0 for each n > 1, where the sum is over all relatively prime or monic partitions of n.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, 0, 0, 0, -1, 1, -1, -1, 1, 1, -1, -1, 0, 1, 1, -3, 1, 4, -5, -3, 3, 4, 2, -6, -6, 19, -8, -25, 25, 20, -12, -34, 2, 30, 38, -117, 54, 159, -173, -123, 55, 229, 32, -250, -148, 753, -365, -1022, 840, 1121, -847, -1482, -390, 2099
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=If[n===1,1,0]-Sum[Times@@a/@y,{y,Rest[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]]}];
    Array[a,20]

A318847 Number of tree-partitions of a multiset whose multiplicities are the prime indices of n.

Original entry on oeis.org

1, 1, 2, 2, 4, 6, 12, 8, 28, 20, 32, 38, 112, 76, 116, 58, 352, 236, 1296, 176, 540, 288, 4448, 374, 612, 1144, 1812, 824, 16640, 1316, 59968, 612, 2336, 4528, 3208, 2924, 231168, 18320, 10632, 2168, 856960, 7132, 3334400, 3776, 11684, 74080, 12679424, 4919, 19192
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2018

Keywords

Comments

This multiset is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.
A tree-partition of m is either m itself or a sequence of tree-partitions, one of each part of a multiset partition of m with at least two parts.

Examples

			The a(6) = 6 tree-partitions of {1,1,2}:
  (112)
  ((1)(12))
  ((2)(11))
  ((1)(1)(2))
  ((1)((1)(2)))
  ((2)((1)(1)))
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    allmsptrees[m_]:=Prepend[Join@@Table[Tuples[allmsptrees/@p],{p,Select[mps[m],Length[#]>1&]}],m];
    Table[Length[allmsptrees[nrmptn[n]]],{n,20}]

Formula

a(n) = A281118(A181821(n)).
a(prime(n)) = A289501(n).
a(2^n) = A005804(n).

Extensions

More terms from Jinyuan Wang, Jun 26 2020

A276687 Number of prime plane trees of weight prime(n).

Original entry on oeis.org

1, 1, 2, 4, 11, 30, 122, 336, 1412, 15129, 44561, 417542, 2479120, 7540843, 35983502, 451454834, 5313515136, 16809858904, 190077477328, 1124302066470, 3521811953565, 38563707677633, 240966297786218, 3192420711942298, 95433674596402663, 567734580765228356
Offset: 1

Views

Author

Gus Wiseman, Sep 13 2016

Keywords

Comments

A prime plane tree is either (case 1) a prime number, or (case 2) a sequence of prime plane trees whose weights are an integer partition of a prime number, where the weight of a tree is the sum of weights of its branches. Prime plane trees are "multichains" in the multiorder of integer partitions of prime numbers into prime parts (A056768).

Examples

			The a(5) = 11 prime plane trees of weight A000040(5) = 11 are: {11, (3,3,5), (3,3,(2,3)), (2,2,7), (2,2,(2,5)), (2,2,(2,(2,3))), (2,2,(2,2,3)), (2,3,3,3), (2,2,2,5), (2,2,2,(2,3)), (2,2,2,2,3)}.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=2, 0,
           b(n, prevprime(i)))+`if`(i>n, 0, b(n-i, i)*(1+
          `if`(i>2, b(i, prevprime(i)), 0))))
        end:
    a:= n-> `if`(n<3, 1, 1+b(ithprime(n), ithprime(n-1))):
    seq(a(n), n=1..40);  # Alois P. Heinz, Sep 15 2016
  • Mathematica
    n=20;
    ser=Product[1/(1-c[Prime[i]]*x^Prime[i]),{i,1,n}];
    sys=Table[c[Prime[i]]==Expand[SeriesCoefficient[ser,{x,0,Prime[i]}]-c[Prime[i]]+1],{i,1,n}];
    Block[{c},Set@@@sys]

A294019 Number of same-trees whose leaves are the parts of the integer partition with Heinz number n.

Original entry on oeis.org

0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 3, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 3, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 8
Offset: 1

Views

Author

Gus Wiseman, Feb 07 2018

Keywords

Comments

By convention a(1) = 0.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The a(108) = 8 same-trees: ((22)(2(11))), ((22)((11)2)), ((2(11))(22)), (((11)2)(22)), (222(11)), (22(11)2), (2(11)22), ((11)222).
From _Antti Karttunen_, Sep 22 2018: (Start)
For 12 = prime(1)^2 * prime(2)^1, we have the following two cases: 2(11) and (11)2, thus a(12) = 2.
For 36 = prime(1)^2 * prime(2)^2, we have the following cases: (11)22, 2(11)2, 22(11), thus a(36) = 3.
For 144  = prime(1)^4 * prime(2)^2, we have the following 14 cases: (1111)(22), (22)(1111); ((11)(11))(22), (22)((11)(11)); (11)(11)22, (11)2(11)2, (11)22(11), 2(11)2(11), 2(11)(11)2, 22(11)(11); ((11)2)(11(2)), ((11)2)(2(11)), (2(11))((11)2), (2(11))(2(11)), thus a(144) = 14.
For n = 8775 = 3^3 * 5^2 * 13^1 = prime(2)^3 * prime(3)^2 * prime(6)^1, we have the following six cases: (222)(33)6, (222)6(33), (33)(222)6, (33)6(222), 6(222)(33), 6(33)(222), thus a(8775) = 6.
(End)
		

Crossrefs

Programs

  • Mathematica
    nn=120;
    ptns=Table[If[n===1,{},Join@@Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]],{n,nn}];
    tris=Join@@Map[Tuples[IntegerPartitions/@#]&,ptns];
    qci[y_]:=qci[y]=If[Length[y]===1,1,Sum[Times@@qci/@t,{t,Select[tris,And[Length[#]>1,Sort[Join@@#,Greater]===y,SameQ@@Total/@#]&]}]];
    qci/@ptns
  • PARI
    A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); }
    productifbalancedfactorization(v) = if(!#v, 1, my(pw=A056239(v[1]), m=1); for(i=1,#v,if(A056239(v[i])!=pw,return(0), m *= A294019(v[i]))); (m));
    A294019aux(n, m, facs) = if(1==n, productifbalancedfactorization(Vec(facs)), my(s=0, newfacs); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); s += A294019aux(n/d, m, newfacs))); (s));
    A294019(n) = if(1==n,0,if(isprime(n),1,A294019aux(n, n-1, List([]))));
    \\ A memoized implementation:
    map294019 = Map();
    A294019(n) = if(1==n,0,if(isprime(n),1,if(mapisdefined(map294019,n), mapget(map294019,n), my(v=A294019aux(n, n-1, List([]))); mapput(map294019,n,v); (v)))); \\ Antti Karttunen, Sep 22 2018

Formula

A281145(n) = Sum_{i=1..A000041(n)} a(A215366(n,i)).
a(p^n) = A006241(n) for any prime p and exponent n >= 1. - Antti Karttunen, Sep 22 2018

A300652 Number of enriched p-trees of weight 2n + 1 in which all outdegrees and all leaves are odd.

Original entry on oeis.org

1, 2, 4, 12, 40, 136, 496, 1952, 7488, 30368, 123456, 512384, 2129664, 9068672, 38391552, 165642752, 713405952, 3109135872, 13528865792, 59591322624, 261549260800, 1159547047936, 5131968999424, 22883893137408, 101851069587456, 456703499042816, 2042949493276672
Offset: 0

Views

Author

Gus Wiseman, Mar 10 2018

Keywords

Comments

An enriched p-tree of weight n > 0 is either a single node of weight n, or a finite sequence of at least two enriched p-trees whose weights are weakly decreasing and sum to n.

Examples

			The a(3) = 12 trees:
7,
(511), (331),
((111)31), (3(111)1), ((311)11), (31111),
((111)(111)1), (((111)11)11), ((11111)11), ((111)1111), (1111111).
		

Crossrefs

Programs

  • Mathematica
    r[n_]:=r[n]=If[OddQ[n],1,0]+Sum[Times@@r/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&]}];
    Table[r[n],{n,1,40,2}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))) - 1/prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 26 2018

Formula

a(n) = (1 - (-1)^n)/2 + Sum_y Product_{i in y} a(i) where the sum is over all non-singleton integer partitions of n with an odd number of parts.

A300797 Number of strict trees of weight 2n + 1 in which all outdegrees and all leaves are odd.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 4, 6, 11, 17, 34, 59, 118, 213, 424, 799, 1606, 3072, 6216, 12172, 24650, 48710, 99333, 198237, 405526, 815267, 1673127, 3387165, 6974702, 14179418, 29285048, 59841630, 123848399, 253927322, 526936694, 1084022437, 2253778793, 4649778115
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Comments

A strict tree of weight n > 0 is either a single node of weight n, or a sequence of two or more strict trees with strictly decreasing weights summing to n.

Examples

			The a(7) = 6 strict trees: 15, (11 3 1), (9 5 1), (7 5 3), ((7 3 1) 3 1), ((5 3 1) 5 1).
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=If[OddQ[n],1,0]+Sum[Times@@a/@ptn,{ptn,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&&UnsameQ@@#&]}];
    Table[a[n],{n,1,60,2}]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^(2*k-1) + O(x^(2*n))) - prod(k=1, n-1, 1 - v[k]*x^(2*k-1) + O(x^(2*n))), 2*n-1)/2); v} \\ Andrew Howroyd, Aug 26 2018

Extensions

a(30)-a(37) from Alois P. Heinz, Mar 13 2018
Previous Showing 61-70 of 85 results. Next