cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 54 results. Next

A122840 a(n) is the number of 0's at the end of n when n is written in base 10.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 13 2006

Keywords

Comments

Greatest k such that 10^k divides n.
a(n) = the number of digits in n - A160093(n).
a(A005117(n)) <= 1. - Reinhard Zumkeller, Mar 30 2010
See A054899 for the partial sums. - Hieronymus Fischer, Jun 08 2012
From Amiram Eldar, Mar 10 2021: (Start)
The asymptotic density of the occurrences of k is 9/10^(k+1).
The asymptotic mean of this sequence is 1/9. (End)

Examples

			a(160) = 1 because there is 1 zero at the end of 160 when 160 is written in base 10.
		

Crossrefs

A007814 is the base 2 equivalent of this sequence.

Programs

  • Haskell
    a122840 n = if n < 10 then 0 ^ n else 0 ^ d * (a122840 n' + 1)
                where (n', d) = divMod n 10
    -- Reinhard Zumkeller, Mar 09 2013
    
  • Mathematica
    a[n_] := IntegerExponent[n, 10]; Array[a, 100] (* Amiram Eldar, Mar 10 2021 *)
  • PARI
    a(n)=valuation(n,10) \\ Charles R Greathouse IV, Feb 26 2014
    
  • Python
    def a(n): return len(str(n)) - len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jun 09 2017
    
  • Python
    def A122840(n): return len(s:=str(n))-len(s.rstrip('0')) # Chai Wah Wu, Jul 06 2022
    
  • Python
    A122840 = lambda n: sympy.multiplicity(10,n) # M. F. Hasler, Apr 05 2024

Formula

a(n) = A160094(n) - 1.
From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=1..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n) = A054899(n) - A054899(n-1).
G.f.: g(x) = Sum_{j>0} x^10^j/(1-x^10^j). (End)
a(n) = min(A007814(n), A112765(n)). - Jianing Song, Jul 23 2022

A059015 Total number of 0's in binary expansions of 0, ..., n.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 6, 6, 9, 11, 13, 14, 16, 17, 18, 18, 22, 25, 28, 30, 33, 35, 37, 38, 41, 43, 45, 46, 48, 49, 50, 50, 55, 59, 63, 66, 70, 73, 76, 78, 82, 85, 88, 90, 93, 95, 97, 98, 102, 105, 108, 110, 113, 115, 117, 118, 121, 123, 125, 126, 128, 129, 130, 130, 136, 141
Offset: 0

Views

Author

Patrick De Geest, Dec 15 2000

Keywords

Comments

Partial sums of A023416. - Reinhard Zumkeller, Jul 15 2011
The graph of this sequence is a version of the Takagi curve: see Lagarias (2012), Section 9, especially Theorem 9.1. - N. J. A. Sloane, Mar 12 2016

Crossrefs

The basic sequences concerning the binary expansion of n are A000120, A000788, A000069, A001969, A023416, A059015, A070939, A083652.

Programs

  • Haskell
    a059015 n = a059015_list !! n
    a059015_list = scanl1 (+) $ map a023416 [0..]
    -- Reinhard Zumkeller, Jul 15 2011
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, a(n-1)+add(1-i, i=Bits[Split](n))) end:
    seq(a(n), n=0..65);  # Alois P. Heinz, Nov 11 2024
  • Mathematica
    Accumulate[ Table[ Count[ IntegerDigits[n, 2], 0], {n, 0, 65}]] (* Jean-François Alcover, Oct 03 2012 *)
    Accumulate[DigitCount[Range[0,70],2,0]] (* Harvey P. Dale, Jun 24 2017 *)
  • PARI
    v=vector(100,i,1);for(i=1,#v-1,v[i+1] = v[i] + #binary(i) - hammingweight(i)); v \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    a(n)=if(n, my(m=logint(n,2)); 2 + (m+1)*(n+1) - 2^(m+1) + sum(j=1,m+1, my(t=floor(n/2^j + 1/2)); (n>>j)*(2*n + 2 - (1 + (n>>j))<Charles R Greathouse IV, Dec 14 2015
    
  • Python
    def A059015(n): return 2+(n+1)*(m:=(n+1).bit_length())-(1<Chai Wah Wu, Mar 01 2023
    
  • Python
    def A059015(n): return 2+(n+1)*((t:=(n+1).bit_length())-n.bit_count())-(1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1) # Chai Wah Wu, Nov 11 2024

Formula

a(n) = b(n)+1, with b(2n) = b(n)+b(n-1)+n, b(2n+1) = 2b(n)+n. - Ralf Stephan, Sep 13 2003
From Hieronymus Fischer, Jun 10 2012: (Start)
With m = floor(log_2(n)):
a(n) = 2 + (m+1)*(n+1) - 2^(m+1) + (1/2)*Sum_{j=1..m+1} (floor(n/2^j)*(2*n + 2 - (1 + floor(n/2^j))*2^j) - floor(n/2^j + 1/2)*(2*n + 2 - floor(n/2^j + 1/2)*2^j)).
a(n) = A083652(n) - (n+1)*A000120(n) + 2^(m-1) - (1/4) + (1/2)*sum_{j=1..m+1} (floor(n/2^j + 1/2)^2 - (floor(n/2^j) + 1/2)^2)*2^j.
a(2^m-1) = 2 + (m-2)*2^(m-1)
(this is the total number of zero digits occurring in all the numbers with <= m places).
G.f.: 1/(1 - x) + (1/(1 - x)^2)*Sum_{j>=0} x^(2*2^j)/(1 + x^(2^j)); corrected by Ilya Gutkovskiy, Mar 28 2018
General formulas for the number of digits <= d in the base p representations of all integers from 0 to n, where 0 <= d < p.
With m = floor(log_p(n)):
a(n) = 1 + (m+1)*(n+1) - (p^(m+1)-1)/(p-1) + (1/2)*sum_{j=1..m+1} (floor(n/p^j)*(2n + 2 - (1 + floor(n/p^j))*p^j) - floor(n/p^j + (p-d-1)/p)*(2n + 2 + ((p-2*d-2)/p - floor(n/p^j + (p-d-1)/p))*p^j)).
a(n) = H(n,p) - (n+1)*F(n,p,d+1) + (1/2)*sum_{j=1..m+1} ((floor(n/p^j + (p-d-1)/p)^2 - floor(n/p^j)^2)*p^j - (((p - 2*d-2)/p)*floor(n/p^j + (p-d-1)/p) + floor(n/p^j))*p^j), where H(n,p) = sum of number of digits in the base p representations of 0 to n and F(n,p,d) = number of digits >=d in the base p representation of n.
a(p^m-1) = 1 + (d+1)*m*p^(m-1) - (p^m-1)/(p-1).
(this is the total number of digits <= d occurring in all the numbers with <= m places in base p representation).
G.f.: 1/(1-x) + (1/(1-x)^2)*Sum_{j>=0} ((1-x^(d*p^j))*x^p^j + (1-x^p^j)*x^p^(j+1)/(1-x^p^(j+1))). (End)

A055640 Number of nonzero digits in decimal expansion of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2
Offset: 0

Views

Author

Henry Bottomley, Jun 06 2000

Keywords

Comments

Comment from Antti Karttunen, Sep 05 2004: (Start)
Also number of characters needed to write the number n in classical Greek alphabetic system, up to n=999. The Greek alphabetic system assigned values to the letters as follows:
alpha = 1, beta = 2, gamma = 3, delta = 4, epsilon = 5, digamma = 6, zeta = 7, eta = 8, theta = 9, iota = 10, kappa = 20, lambda = 30, mu = 40, nu = 50, xi = 60, omicron = 70, pi = 80, koppa = 90, rho = 100, sigma = 200, tau = 300, upsilon = 400, phi = 500, chi = 600, psi = 700, omega = 800, sampi = 900. (End)
For partial sums see A102685. - Hieronymus Fischer, Jun 06 2012

Examples

			129 is written as rho kappa theta in the old Greek system.
		

References

  • L. Threatte, The Greek Alphabet, in The World's Writing Systems, edited by Peter T. Daniels and William Bright, Oxford Univ. Press, 1996, p. 278.

Crossrefs

Differs from A098378 for the first time at position n=200 with a(200)=1, as only one nonzero Arabic digit (and only one Greek letter) is needed for two hundred, while A098378(200)=2 as two characters are needed in the Ethiopic system.

Programs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j+0.9) - floor(n/10^j)), where m = floor(log_10(n)).
a(n) = m + 1 - A055641(n).
G.f.: (1/(1-x))*Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(n) = A055642(n) - A055641(n).

A102669 Number of digits >= 2 in decimal representation of n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

a(n) = 0 iff n is in A007088 (numbers in base 2). - Bernard Schott, Feb 19 2023

Crossrefs

Programs

  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=2 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    Table[Total@ Take[DigitCount@ n, {2, 9}], {n, 0, 104}] (* Michael De Vlieger, Aug 17 2017 *)

Formula

Contribution from Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 4/5) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(2*10^j) - x^(10*10^j))/(1 - x^10^(j+1)).
General formulas for the number of digits >= d in the decimal representations of n, where 1 <= d <= 9:
a(n) = Sum_{j=1..m+1} (floor(n/10^j + (10-d)/10) - floor(n/10^j)), where m = floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(d*10^j) - x^(10*10^j))/(1 - x^10^(j+1)). (End)

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A102685 Partial sums of A055640.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

The total number of nonzero digits occurring in all the numbers 0, 1, 2, ... n (in decimal representation). - Hieronymus Fischer, Jun 10 2012

Crossrefs

Formula

From Hieronymus Fischer, Jun 06 2012: (Start)
a(n) = (1/2)*Sum_{j=1..m+1} (floor((n/10^j)+0.9)*(2n + 2 + (0.8 - floor((n/10^j)+0.9))*10^j) - floor(n/10^j)*(2n + 2 - (floor(n/10^j)+1) * 10^j)), where m = floor(log_10(n)).
a(n) = (n+1)*A055640(n) + (1/2)*Sum_{j=1..m+1} ((8*floor((n/10^j)+0.9)/10 + floor(n/10^j))*10^j - (floor((n/10^j)+0.9)^2 - floor(n/10^j)^2)*10^j), where m = floor(log_10(n)).
a(10^m-1) = 9*m*10^(m-1). (This is the total number of nonzero digits occurring in all the numbers with <= m digits.)
G.f.: g(x) = (1/(1-x)^2) * Sum_{j>=0} (x^10^j - x^(10*10^j))/(1-x^10^(j+1)). (End)

A160094 a(n) = 1 + A122840(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Anonymous, May 01 2009

Keywords

Comments

a(n) is the Levenshtein distance from the decimal expansion of n - 1 to the decimal expansion of n. For example, to convert "9" to "10", substitute "0" for "9" and insert "1". Since two such operations are required, a(10) = 2. See the analogous A091090 (binary expansion) and A115777 (full definition). - Rick L. Shepherd, Mar 25 2015

Examples

			a(160) = 2 because the last nonzero digit of 160 (counting from left to right), when 160 is written in base 10, is 6, and that 6 occurs 2 digits from the right in 160.
		

Crossrefs

Programs

  • Mathematica
    IntegerExponent[Range[150]]+1 (* Harvey P. Dale, Feb 06 2015 *)

Formula

From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = Sum_{j=0..m} (1 - ceiling(frac(n/10^j))).
a(n) = m + 1 + Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n) = 1 + A054899(n) - A054899(n-1).
G.f.: g(x) = (x/(1-x)) + Sum_{j>0} x^10^j/(1-x^10^j). (End)
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 10/9. - Amiram Eldar, Jul 10 2023
a(n) = A122840(10*n). - R. J. Mathar, Jun 28 2025

Extensions

Name simplified by Jon E. Schoenfield, Feb 26 2014

A160093 Number of digits in n, excluding any trailing zeros.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3
Offset: 1

Views

Author

Anonymous, May 01 2009

Keywords

Examples

			a(1060000) = 3 because discarding the trailing zeros from 1060000 leaves 106, which is a 3-digit number.
		

Crossrefs

Programs

  • Mathematica
    lnzd[n_]:=Module[{spl=Last[Split[IntegerDigits[n]]]},If[!MemberQ[ spl,0], IntegerLength[n], IntegerLength[n]-Length[spl]]]; Array[lnzd,110] (* Harvey P. Dale, Jun 05 2013 *)
    Table[IntegerLength[n] - IntegerExponent[n, 10], {n, 100}] (* Amiram Eldar, Sep 14 2020 *)
  • PARI
    a(n)=if(n==0,1,#digits(n/10^valuation(n,10))) \\ Joerg Arndt, Jan 11 2017
    
  • PARI
    a(n)=logint(n,10)+1-valuation(n,10) \\ Charles R Greathouse IV, Jan 12 2017
  • Python
    def A160093(n):
         return len(str(int(str(n)[::-1]))) # Indranil Ghosh, Jan 11 2017
    

Formula

From Hieronymus Fischer, Jun 08 2012: (Start)
With m = floor(log_10(n)), frac(x) = x-floor(x):
a(n) = 1 + Sum_{j=0..m} ceiling(frac(n/10^j)).
a(n) = 1 - Sum_{j=1..m} (floor(-frac(n/10^j))).
a(n)= A055642(n) + A054899(n-1) - A054899(n).
G.f.: (x/(1-x)) + (1/(1-x))*Sum_{j>0} x^(10^j+1)*(1 - x^(10^j-1))/(1-x^10^j). (End)
a(n) = A055642(A004086(n)). - Indranil Ghosh, Jan 11 2017
a(n) = A055642(A004151(n)). - Amiram Eldar, Sep 14 2020

Extensions

Simpler definition and changed example from Jon E. Schoenfield, Feb 15 2014

A102683 Number of digits 9 in decimal representation of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Crossrefs

Programs

  • Haskell
    a102683 =  length . filter (== '9') . show
    -- Reinhard Zumkeller, Dec 29 2011
  • Maple
    p:=proc(n) local b,ct,j: b:=convert(n,base,10): ct:=0: for j from 1 to nops(b) do if b[j]>=9 then ct:=ct+1 else ct:=ct fi od: ct: end: seq(p(n),n=0..116); # Emeric Deutsch, Feb 23 2005
  • Mathematica
    a[n_] := DigitCount[n, 10, 9]; Array[a, 100, 0] (* Amiram Eldar, Jul 24 2023 *)

Formula

a(A007095(n)) = 0; a(A011539(n)) > 0. - Reinhard Zumkeller, Dec 29 2011
From Hieronymus Fischer, Jun 10 2012: (Start)
a(n) = Sum_{j=1..m+1} (floor(n/10^j + 1/10) - floor(n/10^j)), where m=floor(log_10(n)).
G.f.: g(x) = (1/(1-x))*Sum_{j>=0} (x^(9*10^j) - x^(10*10^j))/(1-x^10^(j+1)). (End)
a(A235049(n)) = 0. - Reinhard Zumkeller, Apr 16 2014

Extensions

More terms from Emeric Deutsch, Feb 23 2005

A073053 Apply DENEAT operator (or the Sisyphus function) to n.

Original entry on oeis.org

101, 11, 101, 11, 101, 11, 101, 11, 101, 11, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22, 112, 22, 112, 22, 112, 22, 202, 112, 202, 112, 202, 112, 202, 112, 202, 112, 112, 22, 112, 22
Offset: 0

Views

Author

Michael Joseph Halm, Aug 16 2002

Keywords

Comments

DENEAT(n): concatenate number of even digits in n, number of odd digits and total number of digits. E.g., 25 -> 1.1.2 = 112 (Digits: Even, Not Even, And Total). Leading zeros are then omitted.
This is also known as the Sisyphus function. - N. J. A. Sloane, Jun 25 2018
Repeated application of the DENEAT operator reduces all numbers to 123. This is easy to prove. Compare A073054, A100961. - N. J. A. Sloane Jun 18 2005

Examples

			a(1) = 0.1.1 -> 11.
a(10000000000) = 10111 because 10000000000 has 10 even digits, 1 odd digit and 11 total digits
		

References

  • M. E. Coppenbarger, Iterations of a modified Sisyphus function, Fib. Q., 56 (No. 2, 2018), 130-141.
  • M. Ecker, Caution: Black Holes at Work, New Scientist (Dec. 1992)
  • M. J. Halm, Blackholing, Mpossibilities 69, (Jan 01 1999), p. 2.
  • J. Schram, The Sisyphus string, J. Rec. Math., 19:1 (1987), 43-44.
  • M. Zeger, Fatal attraction, Mathematics and Computer Education, 27:2 (1993), 118-123.

Crossrefs

Programs

  • Maple
    read("transforms") :
    A073053 := proc(n)
        local e,o,L ;
        if n = 0 then
            0 ;
        else
            e := A196563(n) ;
            o := A196564(n) ;
            L := [e,o,e+o] ;
            digcatL(L) ;
        end if;
    end proc: # R. J. Mathar, Jul 13 2012
    # Maple code based on R. J. Mathar's code for A171797, added by N. J. A. Sloane, May 12 2019 (Start)
    nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
    cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
    catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
    A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
    A171797 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n1, n2, n1-n2]) ; end proc:
    A073053 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2, n1-n2, n1]) ; end proc:
    seq(A073053(n), n=1..80) ; (End)
    L:=proc(n) if n=0 then 1 else floor(evalf(log(n)/log(10)))+1; fi; end;
    S:=proc(n) local Le,Ld,Lt,t1,e,d,t; global L;
    t1:=convert(n,base,10); e:=0; d:=0; t:=nops(t1);
    for i from 1 to t do if (t1[i] mod 2) = 0 then e:=e+1; else d:=d+1; fi; od:
    Le:=L(e); Ld:=L(d); Lt:=L(t);
    if e=0 then 10^Lt*d+t
    elif d=0 then 10^(Ld+Lt)*e+10^Lt*d+t
    else 10^(Ld+Lt)*e+10^Lt*d+t; fi;
    end;
    [seq(S(n),n=1..200)]; # N. J. A. Sloane, Jun 25 2018
    # alternative Maple program:
    a:= n-> (l-> (e-> parse(cat(e, (h-> [h-e, h][])(nops(l))))
        )(nops(select(x-> x::even, l))))(convert(n, base, 10)):
    seq(a(n), n=0..200);  # Alois P. Heinz, Jan 21 2022
  • Mathematica
    f[n_] := Block[{id = IntegerDigits[n]}, FromDigits[ Join[ IntegerDigits[ Length[ Select[id, EvenQ[ # ] &]]], IntegerDigits[ Length[ Select[id, OddQ[ # ] &]]], IntegerDigits[ Length[ id]] ]]]; Table[ f[n], {n, 0, 55}] (* Robert G. Wilson v, Jun 09 2005 *)
    s={};Do[id=IntegerDigits[n];ev=Select[id, EvenQ];ne=Select[id, OddQ];fd=FromDigits[{Length[ev], Length[ne], Length[id]}]; s=Append[s, fd], {n, 81}];SameQ[newA073053-s] (* Zak Seidov *)
    deneat[n_]:=Module[{idn=IntegerDigits[n]},FromDigits[Flatten[ IntegerDigits/@ {Count[ idn,?EvenQ],Count[ idn,?OddQ],Length[ idn]}]]] Array[ deneat,60,0]// Flatten (* Harvey P. Dale, Aug 13 2021 *)
  • Python
    def a(n):
        s = str(n)
        e = sum(1 for c in s if c in "02468")
        return int(str(e) + str(len(s)-e) + str(len(s)))
    print([a(n) for n in range(54)]) # Michael S. Branicky, Jan 21 2022

Extensions

Edited and corrected by Jason Earls and Robert G. Wilson v, Jun 03 2005
a(0) added by N. J. A. Sloane, May 12 2019

A193238 Number of prime digits in decimal representation of n.

Original entry on oeis.org

0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 0, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 19 2011

Keywords

Crossrefs

Programs

Formula

a(A084984(n))=0; a(A118950(n))>0; a(A092620(n))=1; a(A092624(n))=2; a(A092625(n))=3; a(A046034(n))=A055642(A046034(n));
a(A000040(n)) = A109066(n).
From Hieronymus Fischer, May 30 2012: (Start)
a(n) = sum_{j=1..m+1} (floor(n/10^j+0.3) + floor(n/10^j+0.5) + floor(n/10^j+0.8) - floor(n/10^j+0.2) - floor(n/10^j+0.4) - floor(n/10^j+0.6)), where m=floor(log_10(n)), n>0.
a(10n+k) = a(n) + a(k), 0<=k<10, n>=0.
a(n) = a(floor(n/10)) + a(n mod 10), n>=0.
a(n) = sum_{j=0..m} a(floor(n/10^j) mod 10), n>=0.
a(A046034(n)) = floor(log_4(3n+1)), n>0.
a(A211681(n)) = 1 + floor((n-1)/4), n>0.
G.f.: g(x) = (1/(1-x))*sum_{j>=0} (x^(2*10^j) + x^(3*10^j)+ x^(5*10^j) + x^(7*10^j))*(1-x^10^j)/(1-x^10^(j+1)).
Also: g(x) = (1/(1-x))*sum_{j>=0} (x^(2*10^j)- x^(4*10^j)+ x^(5*10^j)- x^(6*10^j)+ x^(7*10^j)- x^(8*10^j))/(1-x^10^(j+1)). (End)
Previous Showing 11-20 of 54 results. Next