cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 73 results. Next

A204030 Symmetric matrix based on f(i,j) = gcd(i+1, j+1), by antidiagonals.

Original entry on oeis.org

2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 3, 1, 1, 3, 1, 2, 1, 2, 5, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 7, 2, 1, 2, 1, 2, 1, 3, 1, 5, 3, 1, 1, 3, 5, 1, 3, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204030 represents the matrix M given by f(i,j) = gcd(i+1, j+1) for i >= 1 and j >= 1. See A204031 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  2 1 2 1 2 1 2 1
  1 3 1 1 3 1 1 3
  2 1 4 1 2 1 4 1
  1 1 1 5 1 1 1 1
  2 3 2 1 6 1 2 3
  1 1 1 1 1 7 1 1
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[i + 1, j + 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204030 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204111 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204111 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(i+1, j+1) (A204030).

Original entry on oeis.org

2, -1, 5, -5, 1, 10, -20, 9, -1, 44, -100, 62, -14, 1, 104, -328, 330, -128, 20, -1, 656, -2208, 2476, -1176, 263, -27, 1, 2624, -10144, 13992, -8880, 2804, -452, 35, -1, 15744, -66112, 102384, -75760, 29512, -6336, 744, -44, 1, 67584
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
   2,   -1;
   5,   -5,    1;
  10,  -20,    9,   -1;
  44, -100,   62,  -14,    1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[i + 1, j + 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204030 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]         (* A204111 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204112 Symmetric matrix based on f(i,j) = gcd(F(i+1), F(j+1)), where F=A000045 (Fibonacci numbers), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 8, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 1, 3, 1, 1, 1, 21, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204112 represents the matrix M given by f(i,j) = gcd(F(i+1), F(j+1)) for i >= 1 and j >= 1. See A204113 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1  1  1  1  1  1
  1  2  1  1  2  1
  1  1  3  1  1  1
  1  1  1  5  1  1
  1  2  1  1  8  1
  1  1  1  1  1 13
		

Crossrefs

Programs

  • Mathematica
    u[n_] := Fibonacci[n + 1]
    f[i_, j_] := GCD[u[i], u[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204112 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204113 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204113 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the matrix at A204112, given by f(i,j) = gcd(F(i+1), F(j+1)), where F=A000045 (Fibonacci numbers).

Original entry on oeis.org

1, -1, 1, -3, 1, 2, -8, 6, -1, 8, -36, 35, -11, 1, 48, -232, 274, -116, 19, -1, 576, -2880, 3620, -1728, 358, -32, 1, 10368, -52992, 70632, -37192, 8906, -1016, 53, -1, 331776, -1716480, 2354112, -1294352, 332812, -42924, 2805
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
  1,  -1;
  1,  -3,   1;
  2,  -8,   6,  -1;
  8, -36,  35, -11,   1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    u[n_] := Fibonacci[n + 1]
    f[i_, j_] := GCD[u[i], u[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204112 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204113 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204114 Symmetric matrix based on f(i,j) = gcd(L(i), L(j)), where L=A000032 (Lucas numbers), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 1, 1, 18, 1, 1, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 29, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204114 represents the matrix M given by f(i,j) = gcd(L(i+1), L(j+1)) for i >= 1 and j >= 1. See A204115 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1  1  1  1  1
  1  3  1  1  1
  1  1  4  1  1
  1  1  1  7  1
  1  1  1  1 11
		

Crossrefs

Programs

  • Mathematica
    u[n_] := LucasL[n]
    f[i_, j_] := GCD[u[i], u[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204114 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204115 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204115 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix from A204114, given by gcd(L(i+1), L(j+1)), where L=A000032 (Lucas numbers).

Original entry on oeis.org

1, -1, 2, -4, 1, 6, -16, 8, -1, 36, -108, 69, -15, 1, 360, -1152, 834, -230, 26, -1, 5280, -17696, 14368, -4668, 682, -44, 1, 147840, -506048, 426568, -147856, 24262, -1952, 73, -1, 6800640, -23573888, 20317360
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
   1,   -1;
   2,   -4,    1;
   6,  -16,    8,   -1;
  36, -108,   69,  -15,    1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    u[n_] := LucasL[n]
    f[i_, j_] := GCD[u[i], u[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204114 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204115 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204116 Symmetric matrix based on f(i,j) = gcd(2^i-1, 2^j-1), by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 15, 1, 3, 1, 1, 1, 7, 1, 1, 7, 1, 1, 1, 3, 1, 3, 31, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 7, 15, 1, 63, 1, 15, 7, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 127, 3, 1, 3, 1, 3, 1, 1, 1, 7, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204116 represents the matrix M given by f(i,j) = gcd(2^i-1, 2^j-1) for i >= 1 and j >= 1. See A204117 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.

Examples

			Northwest corner:
  1  1  1  1
  1  3  1  3
  1  1  7  1
  1  3  1 15
		

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[2^i - 1, 2^j - 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204116 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204117 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204117 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(2^i-1, 2^j-1) (A204116).

Original entry on oeis.org

1, -1, 2, -4, 1, 12, -28, 11, -1, 144, -360, 182, -26, 1, 4320, -11088, 5940, -984, 57, -1, 233280, -616032, 348768, -64728, 4506, -120, 1, 29393280, -78086592, 44775936, -8554608, 636444, -19740, 247, -1, 7054387200
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
    1,   -1;
    2,   -4,    1;
   12,  -28,   11,   -1;
  144, -360,  182,  -26,    1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[2^i - 1, 2^j - 1];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204116 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204117 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204119 Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of f(i,j) = gcd(prime(i), prime(j)) (A204118).

Original entry on oeis.org

2, -1, 5, -5, 1, 22, -28, 10, -1, 140, -204, 95, -17, 1, 1448, -2272, 1210, -278, 28, -1, 17856, -29680, 17444, -4732, 637, -41, 1, 291456, -504832, 317576, -96040, 15386, -1328, 58, -1, 5338368, -9577728, 6373968
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are real, and they interlace the zeros of p(n+1). See A202605 and A204016 for guides to related sequences.

Examples

			Top of the array:
    2,   -1;
    5,   -5,    1;
   22,  -28,   10,   -1;
  140, -204,   95,  -17,    1;
		

References

  • (For references regarding interlacing roots, see A202605.)

Crossrefs

Programs

  • Mathematica
    f[i_, j_] := GCD[Prime[i], Prime[j]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8 X 8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]  (* A204118 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                 (* A204119 *)
    TableForm[Table[c[n], {n, 1, 10}]]

A204120 Symmetric matrix based on f(i,j) = gcd(prime(i+1),prime(j+1)), by antidiagonals.

Original entry on oeis.org

3, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 17, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 11 2012

Keywords

Comments

A204120 represents the matrix M given by f(i,j)=GCD(prime(i+1),prime(j+1)) for i>=1 and j>=1. See A204121 for characteristic polynomials of principal submatrices of M, with interlacing zeros. See A204016 for a guide to other choices of M.
Square array with odd primes (A065091) on main diagonal, and 1 at all other entries; array A204118 without its top row and the leftmost column. - Antti Karttunen, Sep 25 2018

Examples

			Northwest corner:
3 1 1 1
1 5 1 1
1 1 7 1
1 1 1 11
		

Crossrefs

Cf. A065091 (main diagonal), A204118, A204121, A204016, A202453.

Programs

  • Mathematica
    f[i_, j_] := GCD[Prime[i + 1], Prime[j + 1]];
    m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
    TableForm[m[8]] (* 8x8 principal submatrix *)
    Flatten[Table[f[i, n + 1 - i],
      {n, 1, 15}, {i, 1, n}]]    (* A204120 *)
    p[n_] := CharacteristicPolynomial[m[n], x];
    c[n_] := CoefficientList[p[n], x]
    TableForm[Flatten[Table[p[n], {n, 1, 10}]]]
    Table[c[n], {n, 1, 12}]
    Flatten[%]                   (* A204121 *)
    TableForm[Table[c[n], {n, 1, 10}]]
  • PARI
    up_to = 65703; \\ = binomial(362+1,2)
    A204120sq(row,col) = gcd(prime(1+row),prime(1+col));
    A204120list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, if(i++ > up_to, return(v)); v[i] = A204120sq((a-(col-1)),col))); (v); };
    v204120 = A204120list(up_to);
    A204120(n) = v204120[n]; \\ Antti Karttunen, Sep 25 2018
Previous Showing 21-30 of 73 results. Next