A211420
a(n) = (8*n)!*n!/((4*n)!*(3*n)!*(2*n)!).
Original entry on oeis.org
1, 140, 60060, 29745716, 15628090140, 8480843582640, 4697400936504900, 2638798257262351800, 1497753729733989900060, 856840435680656569701776, 493243073668546377605912560, 285369375758780754651194529300, 165789876049841088844342275759300
Offset: 0
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc., Vol. 79, Issue 2 (2009), 422-444.
- F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
-
a := n -> (2^(6*n)*GAMMA(4*n + 1/2))/(GAMMA(n + 1/2)*GAMMA(3*n + 1)):
seq(a(n), n = 0..12); # Peter Luschny, Jul 11 2023
-
Table[ 2^(6*n) * Gamma[4*n + 1/2] / (Gamma[n + 1/2] * Gamma[3*n + 1]), {n, 0, 12}] (* James C. McMahon, Feb 24 2024 *)
A352373
a(n) = [x^n] ( 1/((1 - x)^2*(1 - x^2)) )^n for n >= 1.
Original entry on oeis.org
2, 12, 74, 484, 3252, 22260, 154352, 1080612, 7621526, 54071512, 385454940, 2758690636, 19810063392, 142662737376, 1029931873824, 7451492628260, 54013574117106, 392188079586468, 2851934621212598, 20766924805302984, 151403389181347160, 1105047483656041080
Offset: 1
n = 2: 12 distributions of 2 identical objects in 4 white and 2 black baskets
White Black
1) (0) (0) (0) (0) [2] [0]
2) (0) (0) (0) (0) [0] [2]
3) (2) (0) (0) (0) [0] [0]
4) (0) (2) (0) (0) [0] [0]
5) (0) (0) (2) (0) [0] [0]
6) (0) (0) (0) (2) [0] [0]
7) (1) (1) (0) (0) [0] [0]
8) (1) (0) (1) (0) [0] [0]
9) (1) (0) (0) (1) [0] [0]
10) (0) (1) (1) (0) [0] [0]
11) (0) (1) (0) (1) [0] [0]
12) (0) (0) (1) (1) [0] [0]
Examples of supercongruences:
a(7) - a(1) = 154352 - 2 = 2*(3^2)*(5^2)*(7^3) == 0 (mod 7^3);
a(2*11) - a(2) = 1105047483656041080 - 12 = (2^2)*3*(11^3)*13*101*103*2441* 209581 == 0 (mod 11^3).
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Cf.
A000984,
A001448,
A001700,
A002003,
A091527,
A119259,
A156894,
A165817,
A211419,
A211421,
A234839,
A262733,
A276098,
A348410,
A351856,
A351857.
-
seq(add( binomial(3*n-2*k-1,n-2*k)*binomial(n+k-1,k), k = 0..floor(n/2)), n = 1..25);
-
nterms=25;Table[Sum[Binomial[3n-2k-1,n-2k]Binomial[n+k-1,k],{k,0,Floor[n/2]}],{n,nterms}] (* Paolo Xausa, Apr 10 2022 *)
A262739
O.g.f. exp( Sum_{n >= 1} A262733(n)*x^n/n ).
Original entry on oeis.org
1, 12, 215, 4564, 106442, 2635704, 68031147, 1810302340, 49308457334, 1368019979976, 38525145673126, 1098380420669000, 31641932951483220, 919622628946689648, 26931762975278938035, 793967020231145502564, 23543663463050594677310, 701763102761640853890600, 21014048069544552257072530, 631868353403527700756671320, 19070677448561228207945931276
Offset: 0
-
A262739 := proc (n) option remember; if n = 0 then 1 else add(1/k!*(7*k)!/GAMMA(7*k/2 + 1)*GAMMA(5*k/2 + 1)/(5*k)!*A262739(n-k), k = 1 .. n)/n end if; end proc:
seq(A262739(n), n = 0..20);
-
a(n) = sum(k=0, n, binomial(7*(n+1),k)*binomial(6*(n+1)-k-2,(n+1)-k-1))/(n+1); \\ Altug Alkan, Oct 03 2015
A330843
Square array T(n,k) = [x^n] ((1+x)^(k+1) / (1-x)^(k-1))^n, n>=0, k>=0, read by descending antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 2, -2, 1, 4, 6, 0, 1, 6, 30, 20, 6, 1, 8, 70, 256, 70, 0, 1, 10, 126, 924, 2310, 252, -20, 1, 12, 198, 2240, 12870, 21504, 924, 0, 1, 14, 286, 4420, 41990, 184756, 204204, 3432, 70, 1, 16, 390, 7680, 104006, 811008, 2704156, 1966080, 12870, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
-2, 6, 30, 70, 126, 198, ...
0, 20, 256, 924, 2240, 4420, ...
6, 70, 2310, 12870, 41990, 104006, ...
0, 252, 21504, 184756, 811008, 2521260, ...
-
T[n_, k_] := Sum[Binomial[(k + 1)*n, j] * Binomial[k*n - j - 1, n - j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, May 05 2021 *)
A364518
Square array read by ascending antidiagonals: T(n,k) = [x^(2*k)] ( (1 + x)^(n+2)/(1 - x)^(n-2) )^k for n, k >= 0.
Original entry on oeis.org
1, 1, -2, 1, 0, 6, 1, 6, -10, -20, 1, 16, 70, 0, 70, 1, 30, 630, 924, 198, -252, 1, 48, 2310, 28672, 12870, 0, 924, 1, 70, 6006, 204204, 1385670, 184756, -4420, -3432, 1, 96, 12870, 860160, 19122246, 69206016, 2704156, 0, 12870, 1, 126, 24310, 2704156, 130378950, 1848483780, 3528923580, 40116600, 104006, -48620
Offset: 0
Square array begins:
n\k| 0 1 2 3 4 5
- + - - - - - - - - - - - - - - - - - - - - - - - - -
0 | 1 -2 6 -20 70 -252 ... see A000984
1 | 1 0 -10 0 198 0 ... see A211419
2 | 1 6 70 924 12870 184756 ... A001448
3 | 1 16 630 28672 1385670 69206016 ... A091496
4 | 1 30 2310 204204 19122246 1848483780 ... A061162
5 | 1 48 6006 860160 130378950 20392706048 ... A276098
6 | 1 70 12870 2704156 601080390 137846528820 ... A001448 bisected
7 | 1 96 24310 7028736 2149374150 678057476096 ... A276099
- Peter Bala, Some integer ratios of factorials
- J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, arXiv:0709.1977 [math.NT], 2007; J. London Math. Soc. (2) 79 2009, 422-444.
- K. Soundararajan, Integral factorial ratios: irreducible examples with height larger than 1, Phil. Trans. Royal Soc., A378: 2018044, 2019.
- Wikipedia, Dixon's identity
- Wikipedia, Hypergeometric function
-
T(n,k) = add( binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j), j = 0..2*k):
# display as a square array
seq(print(seq(T(n, k), k = 0..10)), n = 0..10);
# display as a sequence
seq(seq(T(n-k, k), k = 0..n), n = 0..10);
-
T(n,k) = sum(j = 0, 2*k, binomial((n+2)*k, j)*binomial(n*k-j-1, 2*k-j));
lista(nn) = for( n=0, nn, for (k=0, n, print1(T(n-k, k), ", "))); \\ Michel Marcus, Aug 13 2023
A173781
a(n) is the smallest entry of the n-th column of the matrix of Super Catalan numbers S(m,n).
Original entry on oeis.org
1, 2, 4, 10, 28, 72, 198, 572, 1560, 4420, 12920, 36176, 104006, 305900, 869400, 2521260, 7443720, 21360240, 62300700, 184410072, 532740208, 1560167752, 4626704368, 13432367520, 39457579590, 117177054540, 341487416088, 1005490725148, 2989296750440, 8737944347440, 25776935824948
Offset: 0
Joseph Alfano (jalfano(AT)assumption.edu), Feb 24 2010
- Seiichi Manyama, Table of n, a(n) for n = 0..2099
- Ira M. Gessel, Super ballot numbers, J. Symbolic Comp., 14 (1992), 179-194.
- Ira M. Gessel and Guoce Xin, A Combinatorial Interpretation of the Numbers 6(2n)!/n!(n+2)!, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.3, 13 pp.
-
nn = 30; {1}~Join~Table[Min@ Map[Function[n, ((2 m)! (2 n)!)/((m!) (n!) (m + n)!)], Range@ nn], {m, nn}] (* Michael De Vlieger, Jul 16 2016 *)
A364402
a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!).
Original entry on oeis.org
1, 126, 41990, 15967980, 6421422150, 2663825039876, 1127155102890908, 483537022180231320, 209536624110664757830, 91505601042318156186900, 40205863224219682380130740, 17753412284992688334256754280, 7871411119532225034145860092700, 3502017467737750755575471520717480
Offset: 0
-
seq( (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!), n = 0..20); # Peter Bala, Sep 24 2023
-
a(n) = (3*n)!*(10*n)!/((2*n)!*(5*n)!*(6*n)!); \\ Michel Marcus, Sep 20 2023
Comments