cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 202 results. Next

A212069 Number of (w,x,y,z) with all terms in {1,...,n} and 3*w = x+y+z.

Original entry on oeis.org

0, 1, 2, 9, 22, 41, 72, 115, 170, 243, 334, 443, 576, 733, 914, 1125, 1366, 1637, 1944, 2287, 2666, 3087, 3550, 4055, 4608, 5209, 5858, 6561, 7318, 8129, 9000, 9931, 10922, 11979, 13102, 14291, 15552, 16885, 18290, 19773, 21334, 22973
Offset: 0

Views

Author

Clark Kimberling, May 01 2012

Keywords

Comments

w is the average of {x,y,z}, as well as {w,x,y,z}.
For a guide to related sequences, see A211795.
a(n) is also the number of (w,x,y,z) with all terms in {0,1,...,n-1} and 3*w = x+y+z. - Clark Kimberling, May 16 2012

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[3 w == x + y + z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]] (* A212087 *)
    FindLinearRecurrence[%]
    (* Peter J. C. Moses, Apr 13 2012 *)
    LinearRecurrence[{3, -3, 2, -3, 3, -1},{0, 1, 2, 9, 22, 41},42] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6).
From R. J. Mathar, Jun 25 2012: (Start)
G.f.: x*(1 - x + 6*x^2 - x^3 + x^4)/((1 + x + x^2)*(1 - x)^4).
a(n) = (n^3 + 2*A049347(n-1))/3. (End)
E.g.f.: (3*exp(x)*x*(1 + 3*x + x^2) + 4*sqrt(3)*exp(-x/2)*sin(sqrt(3)*x/2))/9. - Stefano Spezia, Aug 06 2025

A212135 Number of (w,x,y,z) with all terms in {1,...,n} and median

Original entry on oeis.org

0, 0, 4, 24, 84, 220, 480, 924, 1624, 2664, 4140, 6160, 8844, 12324, 16744, 22260, 29040, 37264, 47124, 58824, 72580, 88620, 107184, 128524, 152904, 180600, 211900, 247104, 286524, 330484, 379320, 433380, 493024, 558624, 630564, 709240, 795060, 888444
Offset: 0

Views

Author

Clark Kimberling, May 05 2012

Keywords

Comments

Also, the number of (w,x,y,z) with all terms in {1,...,n} and median>mean.
For a guide to related sequences, see A211795.
Also, a(n+1) is the length of the long leg of the unique primitive Pythagorean triple whose inradius is A000217(n). - Miguel-Ángel Pérez García-Ortega, Jul 13 2025

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[
    Apply[Plus, Rest[Most[Sort[{w, x, y, z}]]]]/2 > (w + x + y + z)/4, s = s + 1], {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Flatten[Map[{t[#]} &, Range[0, 20]]]  (* A212135 *)
    %/4 (* A002817 *)
  • PARI
    concat(vector(2), Vec(4*x*(1 + x + x^2) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Dec 02 2017

Formula

a(n) + A212134(n) = n^4.
a(n) = n*(n - 1)*(n^2 - n + 2)/2.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
G.f.: 4*x*(1 + x + x^2) / (1 - x)^5. - Colin Barker, Dec 02 2017

A212523 Number of (w,x,y,z) with all terms in {1,...,n} and w+x

Original entry on oeis.org

0, 0, 5, 31, 106, 270, 575, 1085, 1876, 3036, 4665, 6875, 9790, 13546, 18291, 24185, 31400, 40120, 50541, 62871, 77330, 94150, 113575, 135861, 161276, 190100, 222625, 259155, 300006, 345506, 395995, 451825, 513360, 580976, 655061
Offset: 0

Views

Author

Clark Kimberling, May 21 2012

Keywords

Comments

For a guide to related sequences, see A211795.
If the initial 0 is omitted, the sequence {b(n): n>=0} = {0, 5, 31, 106, 270, 575, 1085, 1876, 3036, 4665, 6875, 9790, ...} is given by b(n) = n*(n+1)*(3*n^2+7*n+5)/6. - N. J. A. Sloane, Jul 25 2021

Crossrefs

Cf. A211795.

Programs

  • Magma
    I:=[0, 0, 5, 31, 106]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2) +10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jun 09 2012
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w + x < y + z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212523 *)
    LinearRecurrence[{5,-10, 10, -5, 1},{0,0,5,31,106},60] (* Vincenzo Librandi, Jun 09 2012 *)

Formula

a(n) = 5a(n-1)-10a(n-2)+10a(n-3)-5a(n-4)+a(n-5).
a(n) = Sum_{i=0..n-1} A048395(i). - J. M. Bergot, Jun 08 2012
G.f.: -x^2*(x+5)*(1+x)/(x-1)^5 . - R. J. Mathar, Sep 23 2016

A212683 Number of (w,x,y,z) with all terms in {1,...,n} and |x-y| = w + |y-z|.

Original entry on oeis.org

0, 0, 2, 8, 22, 46, 84, 138, 212, 308, 430, 580, 762, 978, 1232, 1526, 1864, 2248, 2682, 3168, 3710, 4310, 4972, 5698, 6492, 7356, 8294, 9308, 10402, 11578, 12840, 14190, 15632, 17168, 18802, 20536, 22374, 24318, 26372, 28538, 30820
Offset: 0

Views

Author

Clark Kimberling, May 24 2012

Keywords

Comments

For a guide to related sequences, see A211795.
Also the number of (w,x,y) with all terms in {0,...,n-1} and |w-x| < |x-y|, see A212959. - Clark Kimberling, Jun 02 2012

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[Abs[x - y] == w + Abs[y - z], s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212683 *)
    %/2  (* A019298 *)
    LinearRecurrence[{3, -2, -2, 3, -1}, {0, 0, 2, 8, 22}, 40]

Formula

a(n) = 2*A019298(n-1) for n>=1.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5).
G.f.: (2*x^2 + 2*x^3 + 2*x^4)/(1 - 3*x + 2*x^2 + 2*x^3 - 3*x^4 + x^5).
a(n) + A212684(n) = n^3. - Clark Kimberling, Jun 02 2012 [corrected by Jason Yuen, Aug 19 2025]
a(n) = (2*n^3 - 3*n^2 + 2*n - (n mod 2))/4. - Ayoub Saber Rguez, Sep 02 2021

A212760 Number of (w,x,y,z) with all terms in {0,...,n}, w even, and x = y + z.

Original entry on oeis.org

1, 3, 12, 20, 45, 63, 112, 144, 225, 275, 396, 468, 637, 735, 960, 1088, 1377, 1539, 1900, 2100, 2541, 2783, 3312, 3600, 4225, 4563, 5292, 5684, 6525, 6975, 7936, 8448, 9537, 10115, 11340, 11988, 13357, 14079, 15600, 16400, 18081, 18963, 20812, 21780, 23805
Offset: 0

Views

Author

Clark Kimberling, May 29 2012

Keywords

Comments

A signed version is A122576.
For a guide to related sequences, see A211795.
Partial sums of the positive elements of A129194. - Omar E. Pol, Dec 28 2013

Crossrefs

Programs

  • Haskell
    a212760 = a260706 . fromInteger . a001318 . (+ 1)
    -- Reinhard Zumkeller, Nov 17 2015
  • Magma
    [(n+1)*(n+2)*(2*n+3+(-1)^n)/8 : n in [0..50]]; // Wesley Ivan Hurt, Jul 22 2014
    
  • Maple
    A212760:=n->(n+1)*(n+2)*(2*n+3+(-1)^n)/8: seq(A212760(n), n=0..50); # Wesley Ivan Hurt, Jul 22 2014
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[(Mod[w, 2] == 0) && x == y + z, s++],
    {w, 0, n}, {x, 0, n}, {y, 0, n}, {z, 0, n}]; s)]];
    Map[t[#] &, Range[0, 50]]  (* A212760 *)
    Table[(n + 1) (n + 2) (2 n + 3 + (-1)^n)/8, {n, 0, 50}] (* Wesley Ivan Hurt, Jul 22 2014 *)
    CoefficientList[Series[(1 + 2 x + 6 x^2 + 2 x^3 + x^4)/((1 + x)^3 (1 - x)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Jul 23 2014 *)

Formula

a(n) = a(n-1)+3*a(n-2)-3*a(n-3)-3*a(n-4)+3*a(n-5)+a(n-6)-a(n-7).
G.f.: ( 1+2*x+6*x^2+2*x^3+x^4 ) / ( (1+x)^3*(1-x)^4 ).
a(n) = (n+1)*(n+2)*(2*n+3+(-1)^n)/8. - Wesley Ivan Hurt, Jul 22 2014
a(n) = A260706(A001318(n+1)). - Reinhard Zumkeller, Nov 17 2015
a(n) = Sum_{i=1..n+1} numerator(i^2/2). - Wesley Ivan Hurt, Feb 26 2017

A211920 Number of (w,x,y,z) with all terms in {1,...,n} and 2*w*x<3*y*z.

Original entry on oeis.org

0, 1, 11, 50, 160, 387, 792, 1480, 2511, 4001, 6104, 8943, 12623, 17396, 23374, 30765, 39803, 50707, 63656, 79050, 96985, 117795, 141871, 169444, 200754, 236327, 276397, 321322, 371547, 427471, 489342, 557906, 633285, 716040, 806754
Offset: 0

Views

Author

Clark Kimberling, Apr 28 2012

Keywords

Comments

a(n)+A211923(n)=n^4.
See A211795 for a guide to related sequences.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[2 w*x < 3 y*z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]] (* A211920 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212087 Number of (w,x,y,z) with all terms in {1,...,n} and w^2+x^2=y^2+z^2.

Original entry on oeis.org

0, 1, 6, 15, 28, 45, 66, 95, 132, 173, 210, 267, 320, 385, 458, 523, 600, 693, 786, 899, 1000, 1109, 1226, 1367, 1492, 1629, 1778, 1931, 2084, 2269, 2426, 2615, 2812, 3013, 3222, 3427, 3624, 3857, 4094, 4335, 4564, 4841, 5082, 5379, 5656, 5913
Offset: 0

Views

Author

Clark Kimberling, May 02 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w^2 + x^2 == y^2 + z^2, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 60]] (* A212087 *)
    (* Peter J. C. Moses, Apr 13 2012 *)

A212151 Number of 2 X 2 matrices M of positive integers such that permanent(M) < n.

Original entry on oeis.org

0, 0, 0, 1, 5, 13, 27, 47, 75, 112, 156, 214, 278, 358, 444, 552, 660, 796, 930, 1099, 1259, 1457, 1649, 1885, 2101, 2377, 2623, 2933, 3221, 3569, 3879, 4279, 4623, 5056, 5452, 5926, 6334, 6878, 7328, 7892, 8404, 9018, 9540, 10228, 10788, 11504, 12142, 12898
Offset: 0

Views

Author

Clark Kimberling, May 07 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(0)..a(N)
    g:= z*(1-z)^(-1)*add(z^i/(1-z^i),i=1..N-2)^2:
    S:=series(g,z,N+1):
    seq(coeff(S,z,n),n=0..N); # Robert Israel, Nov 16 2017
  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w*x + y*z < n, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]  (* A212151 *)
    (* Peter J. C. Moses, Apr 13 2012 *)
  • Python
    from sympy import divisor_count
    def A212151(n): return  sum((sum(divisor_count(i+1)*divisor_count(j-i) for i in range(j>>1))<<1)+(divisor_count(j+1>>1)**2 if j&1 else 0) for j in range(1,n-1)) # Chai Wah Wu, Jul 26 2024

Formula

a(n) + A212240(n) = n^4.
a(n) = Sum_{k=1..n-1} Sum_{i=1..n-1} d(k) * floor((n-k-1)/i), where d(k) is the number of divisors of k (A000005). - Wesley Ivan Hurt, Nov 16 2017
G.f.: (x/(1-x))*(Sum_{i>=1} x^i/(1-x^i))^2. - Robert Israel, Nov 16 2017
from Ridouane Oudra, Oct 10 2023: (Start)
a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} tau(i*j)*floor((n-1)/(i+j)) ;
a(n) = Sum_{i=1..n-1} Sum_{j=1..i-1} tau(j)*tau(i-j) ;
a(n+2) = Sum_{i=1..n} A055507(i). (End)

A212246 Number of (w,x,y,z) with all terms in {1,...,n} and w <= x > y <= z.

Original entry on oeis.org

0, 0, 4, 21, 65, 155, 315, 574, 966, 1530, 2310, 3355, 4719, 6461, 8645, 11340, 14620, 18564, 23256, 28785, 35245, 42735, 51359, 61226, 72450, 85150, 99450, 115479, 133371, 153265, 175305, 199640, 226424, 255816, 287980, 323085
Offset: 0

Views

Author

Clark Kimberling, May 19 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Cf. A211795.

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w <= x > y <= z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 40]]   (* A212246 *)
  • PARI
    a(n) = n*(n-1)*(n+1)*(5*n+6)/24 \\ Charles R Greathouse IV, Feb 16 2015

Formula

a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5).
G.f.: x^2*(4+x)/(1-x)^5. - Bruno Berselli, May 31 2012
a(n) = (n-1)*n*(n+1)*(5*n+6)/24. - Bruno Berselli, May 31 2012

Extensions

Offset corrected by Charles R Greathouse IV, Feb 16 2015

A212509 Number of (w,x,y,z) with all terms in {1,...,n} and w<2x and y<=3z.

Original entry on oeis.org

0, 1, 12, 63, 180, 437, 891, 1628, 2736, 4392, 6600, 9646, 13608, 18669, 24990, 32955, 42432, 54033, 67797, 84010, 102900, 125118, 150282, 179444, 212544, 249977, 292032, 339687, 392196, 451165, 516375, 588336, 667392, 754908, 849660, 953922, 1067256
Offset: 0

Views

Author

Clark Kimberling, May 20 2012

Keywords

Comments

For a guide to related sequences, see A211795.

Crossrefs

Programs

  • Mathematica
    t = Compile[{{n, _Integer}}, Module[{s = 0},
    (Do[If[w < 2 x && y <= 3 z, s = s + 1],
    {w, 1, #}, {x, 1, #}, {y, 1, #}, {z, 1, #}] &[n]; s)]];
    Map[t[#] &, Range[0, 50]]   (* A212509 *)
  • PARI
    concat(0, Vec(x*(1 +12*x +61*x^2 +154*x^3 +288*x^4 +421*x^5 +505*x^6 +510*x^7 +487*x^8 +387*x^9 +246*x^10 +120*x^11 +42*x^12 +6*x^13) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3) + O(x^60))) \\ Colin Barker, Dec 17 2015

Formula

a(n) = 2*a(n-2)+2*a(n-3)-a(n-4)-4*a(n-5)+2*a(n-7)-2*a(n-9)+4*a(n-11)+a(n-12)-2*a(n-13)-2*a(n-14)+a(n-16).
G.f.: x*(1 +12*x +61*x^2 +154*x^3 +288*x^4 +421*x^5 +505*x^6 +510*x^7 +487*x^8 +387*x^9 +246*x^10 +120*x^11 +42*x^12 +6*x^13) / ((1 -x)^5*(1 +x)^3*(1 -x +x^2)*(1 +x +x^2)^3). - Colin Barker, Dec 17 2015
Previous Showing 11-20 of 202 results. Next