A181130
Numerator of Integral_{x=0..+oo} Polylog(-n, -x)^2.
Original entry on oeis.org
1, 2, 8, 8, 32, 6112, 3712, 362624, 71706112, 3341113856, 79665268736, 1090547664896, 38770843648, 106053090598912, 5507347586961932288, 136847762542978039808, 45309996254420664320, 3447910579774800362340352
Offset: 1
-
seq(numer((-1)^n*add(binomial(n,k)*bernoulli(n+k),k=0..n)), n=1..30); # Robert Israel, Jun 02 2015
-
Table[Numerator[Integrate[PolyLog[-n, -x]^2, {x, 0, Infinity}]], {n, 1, 18}]
-
a(n)=(-1)^n*sum(k=0,n,binomial(n,k)*bernfrac(n+k)) \\ Charles R Greathouse IV, Jun 03 2015
-
# uses[BernoulliMedian_list from A212196]
def A181130_list(n): return [q.numerator() for q in BernoulliMedian_list(n)]
# Peter Luschny, May 04 2012
A238813
Numerators of the coefficients of Euler-Ramanujan’s harmonic number expansion into negative powers of a triangular number.
Original entry on oeis.org
1, -1, 1, -1, 1, -191, 29, -2833, 140051, -6525613, 38899057, -532493977, 4732769, -12945933911, 168070910246641, -4176262284636781, 345687837634435, -26305470121572878741, 1747464708706073081, -2811598717039332137041, 166748874686794522517053
Offset: 1
R_9 = 140051/17459442 = a(9)/A093334(9).
- Stanislav Sykora, Table of n, a(n) for n = 1..296
- Chao-Ping Chen, On the coefficients of asymptotic expansion for the harmonic number by Ramanujan, The Ramanujan Journal, (2016) 40: 279.
- Feng, L. and Wang, W., Riordan Array Approach to the Coefficients of Ramanujan's Harmonic Number Expansion, Results Math (2017) 71: 1413.
- M. B. Villarino, Ramanujan’s Harmonic Number Expansion into Negative Powers of a Triangular Number, Journal of Inequalities in Pure and Applied Mathematics, Volume 9, Issue 3, Article 89 (also arXiv:0707.3950v2 [math.CA] 28 Jul 2007).
-
a := n -> - numer(add(binomial(n,k)*bernoulli(n+k), k=0..n)/2^n);
seq(a(n), n=1..21); # Peter Luschny, Aug 13 2017
-
Table[Numerator[-Sum[Binomial[n,k]*BernoulliB[n+k]/2^n,{k,0,n}]], {n,1,25}] (* G. C. Greubel, Aug 30 2018 *)
-
Rn(nmax)= {local(n,k,v,R);v=vector(nmax);x=1/2;
for(n=1,nmax,R=1;for(k=1,n,R+=(-4)^k*binomial(n,k)*eval(bernpol(2*k)));
R*=(-1)^(n-1)/(2*n*8^n);v[n]=R);return (v);}
// returns an array v[1..nmax] of the rational coefficients
A239275
a(n) = numerator(2^n * Bernoulli(n, 1)).
Original entry on oeis.org
1, 1, 2, 0, -8, 0, 32, 0, -128, 0, 2560, 0, -1415168, 0, 57344, 0, -118521856, 0, 5749735424, 0, -91546451968, 0, 1792043646976, 0, -1982765704675328, 0, 286994513002496, 0, -3187598700536922112, 0, 4625594563496048066560, 0, -16555640873195841519616, 0, 22142170101965089931264, 0
Offset: 0
-
seq(numer(2^n*bernoulli(n, 1)), n=0..35); # Peter Luschny, Jul 17 2017
-
Table[Numerator[2^n*BernoulliB[n, 1]], {n, 0, 100}] (* Indranil Ghosh, Jul 18 2017 *)
-
from sympy import bernoulli
def a(n): return (2**n * bernoulli(n, 1)).numerator
print([a(n) for n in range(51)]) # Indranil Ghosh, Jul 18 2017
A227577
Square array read by antidiagonals, A(n,k) the numerators of the elements of the difference table of the Euler polynomials evaluated at x=1, for n>=0, k>=0.
Original entry on oeis.org
1, -1, 1, 0, -1, 0, 1, 1, -1, -1, 0, 1, 1, 1, 0, -1, -1, -1, 1, 1, 1, 0, -1, -1, -5, -1, -1, 0, 17, 17, 13, 5, -5, -13, -17, -17, 0, 17, 17, 47, 13, 47, 17, 17, 0, -31, -31, -107, -73, -13, 13, 73, 107, 31, 31, 0, -31, -31, -355
Offset: 0
Read by antidiagonals:
1;
-1/2, 1/2;
0, -1/2, 0;
1/4, 1/4, -1/4, -1/4;
0, 1/4, 1/2, 1/4, 0;
-1/2, -1/2, -1/4, 1/4, 1/2, 1/2;
0, -1/2, - 1, -5/4, -1, -1/2, 0;
...
Row sums: 1, 0, -1/2, 0, 1, 0, -17/4, 0, ... = 2*A198631(n+1)/A006519(n+2).
Denominators: 1, 1, 2, 1, 1, 1, 4, 1, ... = A160467(n+2)?
-
DifferenceTableEulerPolynomials := proc(n) local A,m,k,x;
A := array(0..n,0..n); x := 1;
for m from 0 to n do for k from 0 to n do A[m,k]:= 0 od od;
for m from 0 to n do A[m,0] := euler(m,x);
for k from m-1 by -1 to 0 do
A[k,m-k] := A[k+1,m-k-1] - A[k,m-k-1] od od;
LinearAlgebra[Transpose](convert(A, Matrix)) end:
DifferenceTableEulerPolynomials(7); # Peter Luschny, Jul 18 2013
-
t[0, 0] = 1; t[0, k_] := EulerE[k, 1]; t[n_, 0] := -t[0, n]; t[n_, k_] := t[n, k] = t[n-1, k+1] - t[n-1, k]; Table[t[n-k, k] // Numerator, {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 18 2013 *)
-
def DifferenceTableEulerPolynomialsEvaluatedAt1(n) :
@CachedFunction
def ep1(n): # Euler polynomial at x=1
if n < 2: return 1 - n/2
s = add(binomial(n,k)*ep1(k) for k in (0..n-1))
return 1 - s/2
T = matrix(QQ, n)
for m in range(n) : # Compute difference table
T[m,0] = ep1(m)
for k in range(m-1,-1,-1) :
T[k,m-k] = T[k+1,m-k-1] - T[k,m-k-1]
return T
def A227577_list(m):
D = DifferenceTableEulerPolynomialsEvaluatedAt1(m)
return [D[k,n-k].numerator() for n in range(m) for k in (0..n)]
A227577_list(12) # Peter Luschny, Jul 18 2013
A229023
Numerators of the main diagonal of A225825 difference table, a sequence linked to Bernoulli, Genocchi and Clausen numbers.
Original entry on oeis.org
1, -2, 16, -424, 2944, -70240, 70873856, -212648576, 98650550272, -90228445612544, 19078660567134208, -2034677178643867648, 123160010212358914048, -19182197131374977024, 228111332170536254898176, -51166426240975948419354886144
Offset: 0
1, -2/3, 16/15, -424/105, 2944/105, -70240/231, 70873856/15015, ...
-
nmax = 30; Clausen[n_] := Times @@ Select[Divisors[n] + 1, PrimeQ]; t = Join[{1}, Table[Numerator[BernoulliB[n, 1/2] - (n + 1)*EulerE[n, 0]]/Clausen[n], {n, 1, nmax}]]; dt = Table[Differences[t, n], {n, 0, nmax}]; Diagonal[dt] // Numerator
A224964
Irregular triangle of the denominators of the unreduced fractions that lead to the second Bernoulli numbers.
Original entry on oeis.org
2, 2, 2, 6, 2, 6, 2, 6, 15, 2, 6, 15, 2, 6, 15, 105, 2, 6, 15, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 2, 6, 15, 105, 105, 231, 15015, 2, 6, 15, 105, 105, 231, 15015
Offset: 0
Triangle begins
2;
2;
2, 6;
2, 6;
2, 6, 15;
2, 6, 15;
2, 6, 15, 105;
2, 6, 15, 105;
2, 6, 15, 105, 105;
2, 6, 15, 105, 105;
2, 6, 15, 105, 105, 231;
2, 6, 15, 105, 105, 231;
2, 6, 15, 105, 105, 231, 15015;
2, 6, 15, 105, 105, 231, 15015;
-
nmax = 7; b[n_] := BernoulliB[n]; b[1] = 1/2; bb = Table[b[n], {n, 0, 2*nmax-1}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; A190339 = diff // Diagonal // Denominator; Table[ Table[ Take[ A190339, n], {2}], {n, 1, nmax}] // Flatten (* Jean-François Alcover, Apr 25 2013 *)
A230069
Numerators of inverse of triangle A082985(n).
Original entry on oeis.org
1, -1, 1, 2, -1, 1, -8, 1, -2, 1, 8, -4, 11, -10, 1, -32, 8, -5, 29, -5, 1, 6112, -8, 26, -33, 7, -7, 1, -3712, 512, -112, 313, -100, 602, -28, 1, 362624, -2944, 1936, -1816, 593, -1268, 70, -4, 1, -71706112, 2432, -960, 31568, -1481, 9681, -566, 38, -15, 1
Offset: 0
Numerators of
1,
-1/3, 1/3,
2/15, -1/3, 1/5,
-8/105, 1/3, -2/5, 1/7,
8/105, -4/9, 11/15, -10/21, 1/9,
-32/231, 8/9, -5/3, 29/21, -5/9, 1/11
-
rows = 10; u[n_, m_] /; m > n = 0; u[n_, m_] := Binomial[2*n - m, m]*(2*n + 1)/(2*n - 2*m + 1); t = Table[u[n, m], {n, 0, rows - 1}, {m, 0, rows - 1}] // Inverse; Table[t[[n, k]] // Numerator, {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 08 2013 *)
A290696
Triangle read by rows, T(n, k) = [x^k](Sum_{k=0..n}(-1)^(n-k)*Stirling2(n, k)*k!* x^k)^2, for 0 <= k <= 2n.
Original entry on oeis.org
1, 0, 0, 1, 0, 0, 1, -4, 4, 0, 0, 1, -12, 48, -72, 36, 0, 0, 1, -28, 268, -1056, 1968, -1728, 576, 0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400, 0, 0, 1, -124, 4924, -70080, 488640, -1909440, 4466880, -6393600, 5486400, -2592000, 518400
Offset: 0
Triangle starts:
[1]
[0, 0, 1]
[0, 0, 1, -4, 4]
[0, 0, 1, -12, 48, -72, 36]
[0, 0, 1, -28, 268, -1056, 1968, -1728, 576]
[0, 0, 1, -60, 1200, -9480, 37140, -79200, 93600, -57600, 14400]
The first few polynomials:
P_0(x) = 1
P_1(x) = x^2
P_2(x) = x^2 - 4*x^3 + 4*x^4
P_3(x) = x^2 - 12*x^3 + 48*x^4 - 72*x^5 + 36*x^6
P_4(x) = x^2 - 28*x^3 + 268*x^4 - 1056*x^5 + 1968*x^6 - 1728*x^7 + 576*x^8
-
P := (n, x) -> add((-1)^(n-k)*Stirling2(n,k)*k!*x^k, k=0..n)^2;
for n from 0 to 6 do seq(coeff(P(n, x), x, k), k=0..2*n) od;
Comments