A212857
Number of 4 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 15, 1135, 271375, 158408751, 191740223841, 429966316953825, 1644839120884915215, 10079117505143103766735, 94135092186827772028779265, 1287215725538576868883610346465, 24929029117106417518788960414909025, 664978827664071363541997348802227351425
Offset: 0
Some solutions for n=3:
1 2 0 1 0 2 1 0 2 2 1 0 2 0 1 2 1 0 1 0 2
2 1 0 1 0 2 0 2 1 0 2 1 2 1 0 1 0 2 2 1 0
1 2 0 2 1 0 1 0 2 0 1 2 2 1 0 2 1 0 1 2 0
2 1 0 0 1 2 2 1 0 2 1 0 1 0 2 2 1 0 2 1 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212858,
A212859,
A212860,
A336196.
-
A212857 := proc(n) sum(z^k/k!^4, k = 0..infinity);
series(%^x, z=0, n+1): n!^4*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212857(n), n=1..13); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[4, n];
Table[a[n], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212858
Number of 5 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 31, 7291, 7225951, 21855093751, 164481310134301, 2675558106868421881, 84853928323286139485791, 4849446032811641059203617551, 469353176282647626764795665676281, 73159514984813223626195834388445570381, 17619138865526260905773841471696025142373661
Offset: 0
Some solutions for n=3:
2 0 1 0 1 2 0 2 1 0 2 1 1 2 0 0 2 1 2 0 1
2 0 1 2 1 0 0 1 2 0 2 1 0 1 2 1 2 0 2 0 1
0 1 2 2 0 1 0 2 1 2 1 0 0 1 2 0 1 2 2 1 0
2 0 1 0 1 2 1 2 0 0 2 1 1 0 2 2 1 0 1 0 2
1 2 0 0 2 1 2 1 0 1 2 0 0 1 2 2 1 0 2 1 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212859,
A212860,
A336197.
-
A212858 := proc(n) sum(z^k/k!^5, k = 0..infinity);
series(%^x, z=0, n+1): n!^5*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212858(n), n=1..12); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[5, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212859
Number of 6 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 63, 45199, 182199871, 2801736968751, 128645361626874561, 14895038886845467640193, 3842738508408709445398181439, 2009810719756197663340563540778591, 1977945985139308994141721986912910579313, 3448496643225334129810790241492300508936547073
Offset: 0
Some solutions for n=3:
2 0 1 1 0 2 2 0 1 0 1 2 2 1 0 0 1 2 0 1 2
0 1 2 0 2 1 1 2 0 0 1 2 1 2 0 0 1 2 0 1 2
1 0 2 2 0 1 2 0 1 2 0 1 1 0 2 1 0 2 2 0 1
0 2 1 0 1 2 2 0 1 2 0 1 0 1 2 1 2 0 0 1 2
1 2 0 2 0 1 0 1 2 1 2 0 1 0 2 0 1 2 1 2 0
2 1 0 1 0 2 0 2 1 0 2 1 0 1 2 2 0 1 1 2 0
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212860.
-
A212859 := proc(n) sum(z^k/k!^6, k = 0..infinity);
series(%^x, z=0, n+1): n!^6*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212859(n), n=1..11); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[6, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A212860
Number of 7 X n arrays with rows being permutations of 0..n-1 and no column j greater than column j-1 in all rows.
Original entry on oeis.org
1, 1, 127, 275563, 4479288703, 347190069843751, 96426023622482278621, 78785944892341703819175577, 163925632052722656731213188429183, 777880066963402408939826643081996101263, 7717574897043522397037273525233635595811018377
Offset: 0
Some solutions for n=3:
0 1 2 0 1 2 0 2 1 0 1 2 0 2 1 0 2 1 0 2 1
1 2 0 0 2 1 0 2 1 1 0 2 0 2 1 1 0 2 2 1 0
1 0 2 2 1 0 2 0 1 0 1 2 2 0 1 1 0 2 1 2 0
0 2 1 1 0 2 0 2 1 1 0 2 0 1 2 2 0 1 0 1 2
2 0 1 2 1 0 1 0 2 2 1 0 1 2 0 0 1 2 1 2 0
2 1 0 0 1 2 1 0 2 0 1 2 2 0 1 1 0 2 2 1 0
1 2 0 2 1 0 0 1 2 0 2 1 2 1 0 2 0 1 2 0 1
Cf.
A000012,
A000225,
A000275,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859.
-
A212860 := proc(n) sum(z^k/k!^7, k = 0..infinity);
series(%^x, z=0, n+1): n!^7*coeff(%,z,n); add(abs(coeff(%,x,k)), k=0..n) end:
seq(A212860(n), n=1..10); # Peter Luschny, May 27 2017
-
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k - j], {j, 1, k}]];
a[n_] := T[7, n];
Table[a[n], {n, 0, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A325305
Irregular triangular array, read by rows: T(n,k) is the sum of the products of distinct multinomial coefficients (n_1 + n_2 + n_3 + ...)!/(n_1! * n_2! * n_3! * ...) taken k at a time, where (n_1, n_2, n_3, ...) runs over all integer partitions of n (n >= 0, 0 <= k <= A070289(n)).
Original entry on oeis.org
1, 1, 1, 1, 1, 3, 2, 1, 10, 27, 18, 1, 47, 718, 4416, 10656, 6912, 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000, 1, 1602, 929171, 260888070, 39883405500, 3492052425000, 177328940580000, 5153150631600000, 82577533320000000, 669410956800000000, 2224399449600000000, 1632586752000000000, 1, 11271
Offset: 0
Triangle begins as follows:
[n=0]: 1, 1;
[n=1]: 1, 1;
[n=2]: 1, 3, 2;
[n=3]: 1, 10, 27, 18;
[n=4]: 1, 47, 718, 4416, 10656, 6912;
[n=5]: 1, 246, 20545, 751800, 12911500, 100380000, 304200000, 216000000;
...
For example, when n = 3, the integer partitions of 3 are 3, 1+2, 1+1+1, and the corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!2!) = 3, and 3!/(1!1!1!) = 6. They are all distinct. Then T(n=3, k=0) = 1, T(n=3, k=1) = 1 + 3 + 6 = 10, T(n=3, k=2) = 1*3 + 1*6 + 3*6 = 27, and T(n=3, k=3) = 1*3*6 = 18.
Consider the list [1, 7, 21, 35, 42, 105, 140, 210, 420, 630, 840, 1260, 2520, 5040] of the A070289(7) = 15 - 1 = 14 distinct multinomial coefficients corresponding to the 15 integer partitions of 7. Then T(7,0) = 1, T(7,1) = 11271 (sum of the coefficients), T(7,2) = 46169368 (sum of products of every two different coefficients), T(7,3) = 92088653622 (sum of products of every three different coefficients), and so on. Finally, T(7,14) = 2372695722072874920960000000000 = product of these coefficients.
- Alois P. Heinz, Rows n = 0..15, flattened
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250; see Eq. (6), p. 248.
- Wikipedia, Partition (number theory).
Cf.
A000012 (column k=0),
A000041,
A005651,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212855,
A212856,
A309951,
A309972,
A325308 (column k=1).
-
g:= proc(n, i) option remember; `if`(n=0 or i=1, [n!], [{map(x->
binomial(n, i)*x, g(n-i, min(n-i, i)))[], g(n, i-1)[]}[]])
end:
b:= proc(n, m) option remember; `if`(n=0, 1,
expand(b(n-1, m)*(g(m$2)[n]*x+1)))
end:
T:= n->(p->seq(coeff(p, x, i), i=0..degree(p)))(b(nops(g(n$2)), n)):
seq(T(n), n=0..7); # Alois P. Heinz, Sep 05 2019
-
g[n_, i_] := g[n, i] = If[n == 0 || i == 1, {n!}, Union[Map[Function[x, Binomial[n, i] x], g[n - i, Min[n - i, i]]], g[n, i - 1]]];
b[n_, m_] := b[n, m] = If[n == 0, 1, b[n - 1, m] (g[m, m][[n]] x + 1)];
T[n_] := CoefficientList[b[Length[g[n, n]], n], x];
T /@ Range[0, 7] // Flatten (* Jean-François Alcover, May 06 2020, after Maple *)
A287314
Triangle read by rows, the coefficients of the polynomials generating the columns of A287316.
Original entry on oeis.org
1, 0, 1, 0, -1, 2, 0, 4, -9, 6, 0, -33, 82, -72, 24, 0, 456, -1225, 1250, -600, 120, 0, -9460, 27041, -30600, 17700, -5400, 720, 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040, 0, -10643745, 33391954, -43471624, 31149496, -13524000, 3622080, -564480, 40320
Offset: 0
Triangle starts:
[0] 1
[1] 0, 1
[2] 0, -1, 2
[3] 0, 4, -9, 6
[4] 0, -33, 82, -72, 24
[5] 0, 456, -1225, 1250, -600, 120
[6] 0, -9460, 27041, -30600, 17700, -5400, 720
[7] 0, 274800, -826336, 1011017, -661500, 249900, -52920, 5040
...
For example let p4(x) = -33*x + 82*x^2 - 72*x^3 + 24*x^4 then p4(n) = A169712(n).
-
A287314_row := proc(n) local k; sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): n!^2*coeff(%,z,n); seq(coeff(%,x,k), k=0..n) end:
for n from 0 to 8 do print(A287314_row(n)) od;
A287314_poly := proc(n) local k, x; sum(z^k/k!^2, k = 0..infinity);
series(%^x, z=0, n+1): unapply(n!^2*coeff(%, z, n), x) end:
for n from 0 to 7 do A287314_poly(n) od;
-
nn = 10; e[x_] := Sum[x^n/n!^2, {n, 0, nn}];
f[list_] := CoefficientList[InterpolatingPolynomial[Table[{i, list[[i]]}, {i, 1, nn}], m], m];Drop[Map[f,Transpose[Table[Table[n!^2, {n, 0, nn}] CoefficientList[
Series[e[x]^k, {x, 0, nn}], x], {k, 1, nn}]]], -1] // Grid (* Geoffrey Critzer, Jan 22 2021 *)
A340986
Square array read by descending antidiagonals. T(n,k) is the number of ways to separate the columns of an ordered pair of n-permutations (that have been written as a 2 X n array, one atop the other) into k cells so that no cell has a column rise. For n >= 0, k >= 0.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 19, 0, 1, 4, 21, 92, 211, 0, 1, 5, 36, 255, 1354, 3651, 0, 1, 6, 55, 544, 4725, 29252, 90921, 0, 1, 7, 78, 995, 12196, 123903, 873964, 3081513, 0, 1, 8, 105, 1644, 26215, 377904, 4368729, 34555880, 136407699, 0
Offset: 0
Square array T(n,k) begins:
1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, ...
0, 3, 10, 21, 36, 55, ...
0, 19, 92, 255, 544, 995, ...
0, 211, 1354, 4725, 12196, 26215, ...
0, 3651, 29252, 123903, 377904, 939155, ...
- R. P. Stanley, Enumerative Combinatorics, Vol. I, Second Edition, Section 3.13.
-
T:= (n, k)-> n!^2*coeff(series(1/BesselJ(0, 2*sqrt(x))^k, x, n+1), x, n):
seq(seq(T(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Feb 02 2021
-
nn = 6; B[n_] := n!^2; e[x_] := Sum[x^n/B[n], {n, 0, nn}];
Table[Table[B[n], {n, 0, nn}] PadRight[CoefficientList[Series[e[-x]^-k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Grid
A212806
Number of n X n matrices in which each row is a permutation of [1..n] and which contain no column rises.
Original entry on oeis.org
1, 3, 163, 271375, 21855093751, 128645361626874561, 78785944892341703819175577, 6795588328283070704898044776213094655, 107414633522643325764587104395687638119674465944431, 392471529081605251407320880492124164530148025908765037878553312273, 407934916447631403509359040563002566177814886353044858592046202746464825839911293037
Offset: 1
For n=2 the three matrices are [12/21], [21/12], [21/21] (but not [12/12]).
From _Petros Hadjicostas_, Aug 26 2019: (Start)
For example, when n = 3, the integer partitions of 3 are 3, 1+2, and 1+1+1, with corresponding (b_1, b_2, b_3) notation (0,0,1), (1,1,0), and (3,0,0). The corresponding multinomial coefficients are 3!/3! = 1, 3!/(1!*2!) = 3, and 3!/(1!*1!*1!) = 6, while the corresponding quantities (b_1 + b_2 + b_3)!/(b_1!*b_2!*b_3!) are 1, 2, and 1. The corresponding exponents of -1 (i.e., n - Sum_{j=1..n} b_j) are 3 - (0+0+1) = 2, 3 - (1+1+0) = 1, and 3 - (3+0+0) = 0.
It follows that a(n) = (-1)^2 * 1 * 1^3 + (-1)^1 * 2 * 3^3 + (-1)^0 * 1 * 6^3 = 163.
(End)
- Alois P. Heinz, Table of n, a(n) for n = 1..30 (first 18 terms from R. H. Hardin)
- Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards (Applied Mathematics Series, 55), 1964; see pp. 831-832 for the multinomial coefficients of integer partitions of n = 1..10.
- Morton Abramson and David Promislow, Enumeration of arrays by column rises, J. Combinatorial Theory Ser. A 24(2) (1978), 247-250. MR0469773 (57 #9554). [Their a(5) on p. 250 is wrong; see A212845.]
- Wikipedia, Partition (number theory).
Cf.
A000041,
A070289,
A212850,
A212851,
A212852,
A212853,
A212854,
A212856,
A212857,
A212858,
A212859,
A212860,
A309951,
A325305.
-
A212806 := proc(n) sum(z^k/k!^n, k=0..infinity);
series(%^x, z=0, n+1): n!^n*coeff(%,z,n); add(abs(coeff(%,x,k)),k=0..n) end:
seq(A212806(n), n=1..11); # Peter Luschny, May 27 2017
-
a[n_] := Module[{s0, s1, s2}, s0 = Sum[z^k/k!^n, {k, 0, n}]; s1 = Series[s0^x, {z, 0, n + 1}] // Normal; s2 = n!^n*Coefficient[s1, z, n]; Sum[Abs[Coefficient[s2, x, k]], {k, 0, n}]]; Array[a, 11] (* Jean-François Alcover, Feb 27 2018, after Peter Luschny *)
T[n_, k_] := T[n, k] = If[k == 0, 1, -Sum[Binomial[k, j]^n*(-1)^j*T[n, k-j], {j, 1, k}]];
a[n_] := T[n, n];
Table[a[n], {n, 1, 12}] (* Jean-François Alcover, Apr 01 2024, after Alois P. Heinz in A212855 *)
A287696
Triangle read by rows, T(n,k) = (n!)^3 * [x^k] [z^n] hypergeom([], [1, 1], z)^x for n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -3, 4, 0, 46, -81, 36, 0, -1899, 3916, -2592, 576, 0, 163476, -375375, 305500, -108000, 14400, 0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400, 0, 6412369860, -16976577828, 17470973569, -9168390000, 2636298000, -400075200, 25401600
Offset: 0
0: [1]
1: [0, 1]
2: [0, -3, 4]
3: [0, 46, -81, 36]
4: [0, -1899, 3916, -2592, 576]
5: [0, 163476, -375375, 305500, -108000, 14400]
6: [0, -25333590, 63002191, -58725000, 26370000, -5832000, 518400]
-
A287696_row := proc(n) local k; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
n!^3*coeff(%, z, n); seq(coeff(%, x, k), k=0..n) end:
for n from 0 to 8 do A287696_row(n) od;
A287696_poly := proc(n) local k, x; hypergeom([],[1,1],z); series(%^x, z=0, n+1):
unapply(n!^3*coeff(%, z, n), x); end:
for n from 0 to 7 do A287696_poly(n) od;
-
T[n_, k_] := (n!)^3 SeriesCoefficient[HypergeometricPFQ[{}, {1, 1}, z]^x, {x, 0, k}, {z, 0, n}];
Table[T[n, k], {n, 0, 7}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 13 2017 *)
Comments