A212960
Number of (w,x,y) with all terms in {0,...,n} and |w-x| != |x-y|.
Original entry on oeis.org
0, 4, 16, 44, 92, 168, 276, 424, 616, 860, 1160, 1524, 1956, 2464, 3052, 3728, 4496, 5364, 6336, 7420, 8620, 9944, 11396, 12984, 14712, 16588, 18616, 20804, 23156, 25680, 28380, 31264, 34336, 37604, 41072, 44748, 48636, 52744, 57076
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Abs[w - x] != Abs[x - y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]] (* A212960 *)
m/4 (* integers *)
A212963
a(n) = number of ordered triples (w,x,y) such that w,x,y are all in {0,...,n} and the numbers |w-x|, |x-y|, |y-w| are distinct.
Original entry on oeis.org
0, 0, 0, 12, 36, 84, 156, 264, 408, 600, 840, 1140, 1500, 1932, 2436, 3024, 3696, 4464, 5328, 6300, 7380, 8580, 9900, 11352, 12936, 14664, 16536, 18564, 20748, 23100, 25620, 28320, 31200, 34272, 37536, 41004, 44676, 48564, 52668, 57000
Offset: 0
a(3) counts the 12 ordered triples in the first column of the following list:
(w,x,y) (|w-x|,|x-y|,|y-w|)
----------------------------
(0,1,3) (1,2,3)
(0,2,3) (2,1,3)
(0,3,1) (3,2,1)
(0,3,2) (3,1,2)
(1,0,3) (1,3,2)
(1,3,0) (2,3,1)
(2,0,3) (2,3,1)
(2,3,0) (1,3,2)
(3,0,1) (3,1,2)
(3,0,2) (3,2,1)
(3,1,0) (2,1,3)
(3,2,0) (1,2,3)
-
t = Compile[{{n, _Integer}},
Module[{s = 0}, (Do[If[Abs[w - x] != Abs[x - y] && Abs[x - y] != Abs[y - w] &&
Abs[y - w] != Abs[w - x], s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]] (*A212963*)
m/12 (*essentially A002623*)
A212966
Number of (w,x,y) with all terms in {0,...,n} and 2*w=range{w,x,y}.
Original entry on oeis.org
1, 1, 3, 8, 10, 12, 23, 25, 29, 44, 48, 52, 73, 77, 83, 108, 114, 120, 151, 157, 165, 200, 208, 216, 257, 265, 275, 320, 330, 340, 391, 401, 413, 468, 480, 492, 553, 565, 579, 644, 658, 672, 743, 757, 773, 848, 864, 880, 961, 977, 995, 1080, 1098
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[2 w == Max[w, x, y] - Min[w, x, y], s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
Map[t[#] &, Range[0, 60]] (* A212966 *)
A212980
Number of (w,x,y) with all terms in {0,...,n} and w
Original entry on oeis.org
0, 1, 6, 17, 37, 68, 113, 174, 254, 355, 480, 631, 811, 1022, 1267, 1548, 1868, 2229, 2634, 3085, 3585, 4136, 4741, 5402, 6122, 6903, 7748, 8659, 9639, 10690, 11815, 13016, 14296, 15657, 17102, 18633, 20253, 21964, 23769, 25670, 27670
Offset: 1
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[w < x + y && x < y, s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 60]] (* A212980 *)
A212984
Number of (w,x,y) with all terms in {0..n} and 3w = x+y.
Original entry on oeis.org
1, 1, 3, 6, 8, 12, 17, 21, 27, 34, 40, 48, 57, 65, 75, 86, 96, 108, 121, 133, 147, 162, 176, 192, 209, 225, 243, 262, 280, 300, 321, 341, 363, 386, 408, 432, 457, 481, 507, 534, 560, 588, 617, 645, 675, 706, 736, 768, 801, 833, 867, 902, 936, 972, 1009
Offset: 0
-
[1 + Floor(2*n/3) + Floor(n^2/3) : n in [0..80]]; // Wesley Ivan Hurt, Jul 25 2016
-
A212984:=n->1 + floor(2*n/3) + floor(n^2/3): seq(A212984(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2016
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[3 w == x + y, s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 70]] (* A212984 *)
A212985
Number of (w,x,y) with all terms in {0,...,n} and 3w = 3x + y.
Original entry on oeis.org
1, 2, 3, 7, 9, 11, 18, 21, 24, 34, 38, 42, 55, 60, 65, 81, 87, 93, 112, 119, 126, 148, 156, 164, 189, 198, 207, 235, 245, 255, 286, 297, 308, 342, 354, 366, 403, 416, 429, 469, 483, 497, 540, 555, 570, 616, 632, 648, 697, 714, 731, 783, 801, 819, 874
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[3 w == 3 x + y, s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 70]] (* A212985 *)
A212987
Number of (w,x,y) with all terms in {0,...,n} and 3*w = 2*x+2*y.
Original entry on oeis.org
1, 1, 3, 5, 8, 10, 16, 18, 25, 29, 37, 41, 52, 56, 68, 74, 87, 93, 109, 115, 132, 140, 158, 166, 187, 195, 217, 227, 250, 260, 286, 296, 323, 335, 363, 375, 406, 418, 450, 464, 497, 511, 547, 561, 598, 614, 652, 668, 709, 725, 767, 785, 828, 846, 892
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[3 w == 2 x + 2 y, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 70]] (* A212987 *)
A212988
Number of (w,x,y) with all terms in {0,...,n} and 4*w = x+y.
Original entry on oeis.org
1, 1, 2, 4, 7, 9, 12, 16, 21, 25, 30, 36, 43, 49, 56, 64, 73, 81, 90, 100, 111, 121, 132, 144, 157, 169, 182, 196, 211, 225, 240, 256, 273, 289, 306, 324, 343, 361, 380, 400, 421, 441, 462, 484, 507, 529, 552, 576, 601, 625, 650, 676, 703, 729, 756, 784
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0}, (Do[If[4 w == x + y, s = s + 1], {w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 70]] (* A212988 *)
A212989
Number of (w,x,y) with all terms in {0,...,n} and 4*w = 4*x+y.
Original entry on oeis.org
1, 2, 3, 4, 9, 11, 13, 15, 24, 27, 30, 33, 46, 50, 54, 58, 75, 80, 85, 90, 111, 117, 123, 129, 154, 161, 168, 175, 204, 212, 220, 228, 261, 270, 279, 288, 325, 335, 345, 355, 396, 407, 418, 429, 474, 486, 498, 510, 559, 572, 585, 598, 651, 665, 679, 693
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[4 w == 4 x + y, s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 70]] (* A212989 *)
LinearRecurrence[{1,0,0,2,-2,0,0,-1,1},{1,2,3,4,9,11,13,15,24},60] (* Harvey P. Dale, Sep 20 2023 *)
A213041
Number of triples (w,x,y) with all terms in {0..n} and 2*|w-x| = max(w,x,y) - min(w,x,y).
Original entry on oeis.org
1, 2, 7, 12, 21, 30, 43, 56, 73, 90, 111, 132, 157, 182, 211, 240, 273, 306, 343, 380, 421, 462, 507, 552, 601, 650, 703, 756, 813, 870, 931, 992, 1057, 1122, 1191, 1260, 1333, 1406, 1483, 1560, 1641, 1722, 1807, 1892, 1981, 2070, 2163, 2256
Offset: 0
-
t = Compile[{{n, _Integer}}, Module[{s = 0},
(Do[If[Max[w, x, y] - Min[w, x, y] == 2 Abs[w - x],
s = s + 1],
{w, 0, n}, {x, 0, n}, {y, 0, n}]; s)]];
m = Map[t[#] &, Range[0, 45]] (* A213041 *)
-
Vec((1+3*x^2)/((1-x)^3*(1+x)) + O(x^99)) \\ Altug Alkan, May 06 2016
Comments