cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 66 results. Next

A317100 Number of series-reduced planted achiral trees with n leaves spanning an initial interval of positive integers.

Original entry on oeis.org

1, 3, 5, 12, 17, 41, 65, 144, 262, 533, 1025, 2110, 4097, 8261, 16407, 32928, 65537, 131384, 262145, 524854, 1048647, 2098181, 4194305, 8390924, 16777234, 33558533, 67109132, 134226070, 268435457, 536887919, 1073741825, 2147516736, 4294968327, 8590000133
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2018

Keywords

Comments

In these trees, achiral means that all branches directly under any given node that is not a leaf or a cover of leaves are equal, and series-reduced means that every node that is not a leaf or a cover of leaves has at least two branches.

Examples

			The a(4) = 12 trees:
  (1111), ((11)(11)), (((1)(1))((1)(1))), ((1)(1)(1)(1)),
  (1222),
  (1122), ((12)(12)),
  (1112),
  (1233),
  (1223),
  (1123),
  (1234).
		

Crossrefs

Programs

  • Mathematica
    allnorm[n_Integer]:=Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1];
    b[n_]:=1+Sum[b[n/d],{d,Rest[Divisors[n]]}];
    a[n_]:=Sum[b[GCD@@Length/@Split[ptn]],{ptn,allnorm[n]}];
    Array[a,10]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n]=2^(n-1) + sumdiv(n, d, v[d])); v} \\ Andrew Howroyd, Aug 19 2018

Formula

a(n) ~ 2^(n-1). - Vaclav Kotesovec, Sep 07 2019

Extensions

Terms a(21) and beyond from Andrew Howroyd, Aug 19 2018

A317719 Numbers that are not powerful tree numbers.

Original entry on oeis.org

6, 10, 12, 13, 14, 15, 18, 20, 21, 22, 24, 26, 28, 29, 30, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 61, 62, 63, 65, 66, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Aug 05 2018

Keywords

Comments

A positive integer n is a powerful tree number iff either n = 1 or n is a prime number whose prime index is a powerful tree number, or n is a powerful number (meaning its prime multiplicities are all greater than 1) whose prime indices are all powerful tree numbers. A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of numbers that are not powerful tree numbers together with their Matula-Goebel trees begins:
   6: (o(o))
  10: (o((o)))
  12: (oo(o))
  13: ((o(o)))
  14: (o(oo))
  15: ((o)((o)))
  18: (o(o)(o))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  24: (ooo(o))
  26: (o(o(o)))
  28: (oo(oo))
  29: ((o((o))))
  30: (o(o)((o)))
		

Crossrefs

Programs

  • Mathematica
    powgoQ[n_]:=Or[n==1,If[PrimeQ[n],powgoQ[PrimePi[n]],And[Min@@FactorInteger[n][[All,2]]>1,And@@powgoQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],!powgoQ[#]&]

A318993 Matula-Goebel number of the planted achiral tree determined by the n-th number whose consecutive prime indices are divisible.

Original entry on oeis.org

1, 2, 4, 3, 8, 7, 16, 5, 9, 19, 32, 17, 64, 53, 11, 128, 23, 256, 67, 49, 131, 512, 59, 27, 311, 25, 241, 1024, 2048, 31, 719, 83, 4096, 1619, 361, 331, 8192, 227, 16384, 739, 3671, 32768, 277, 81, 103, 2063, 65536, 97, 1523, 2809, 8161, 131072, 262144, 17863
Offset: 1

Views

Author

Gus Wiseman, Sep 06 2018

Keywords

Examples

			The sequence of all planted achiral trees begins: o, (o), (oo), ((o)), (ooo), ((oo)), (oooo), (((o))), ((o)(o)), ((ooo)), (ooooo), (((oo))), (oooooo), ((oooo)), ((((o)))), (ooooooo), (((o)(o))), (oooooooo), (((ooo))), ((oo)(oo)).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ptnToAch[y_]:=Fold[Table[#1,{#2}]&,{},Divide@@@Partition[Append[y,1],2,1]];
    MGNumber[[]]:=1;MGNumber[x:[__]]:=If[Length[x]==1,Prime[MGNumber[x[[1]]]],Times@@Prime/@MGNumber/@x];
    MGNumber/@ptnToAch/@Reverse/@primeMS/@Select[Range[100],Or[#==1,PrimeQ[#],Divisible@@Reverse[primeMS[#]]]&]

A358507 Sorted list of positions of first appearances in the sequence counting permutations of Matula-Goebel trees (A206487).

Original entry on oeis.org

1, 6, 12, 24, 30, 48, 60, 72, 104, 120, 144, 148, 156, 180, 192, 222, 288, 312, 360, 390, 432, 444, 480, 576, 712, 720, 780, 832, 864, 900, 1080, 1110, 1248, 1260, 1296, 1440, 1560, 1680, 2136, 2160, 2262, 2304, 2340, 2496, 2520, 2592, 2738, 2880, 2886, 3072
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

To get a permutation of a tree, we choose a permutation of the multiset of branches of each node.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their corresponding trees begin:
    1: o
    6: (o(o))
   12: (oo(o))
   24: (ooo(o))
   30: (o(o)((o)))
   48: (oooo(o))
   60: (oo(o)((o)))
   72: (ooo(o)(o))
  104: (ooo(o(o)))
  120: (ooo(o)((o)))
  144: (oooo(o)(o))
  148: (oo(oo(o)))
  156: (oo(o)(o(o)))
  180: (oo(o)(o)((o)))
  192: (oooooo(o))
  222: (o(o)(oo(o)))
  288: (ooooo(o)(o))
  312: (ooo(o)(o(o)))
		

Crossrefs

Positions of first appearances in A206487.
The unsorted version is A358508.
A000081 counts rooted trees, ordered A000108.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
    MGTree[n_Integer]:=If[n===1,{},MGTree/@primeMS[n]]
    treeperms[t_]:=Times@@Cases[t,b:{}:>Length[Permutations[b]],{0,Infinity}];
    fir[q_]:=Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&];
    fir[Table[treeperms[MGTree[n]],{n,100}]]

A358521 Sorted list of positions of first appearances in the sequence of Matula-Goebel numbers of standard ordered trees (A358506).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 16, 17, 18, 19, 20, 22, 24, 32, 33, 34, 35, 36, 37, 38, 40, 43, 44, 48, 64, 66, 67, 68, 69, 70, 72, 74, 75, 76, 80, 86, 88, 96, 128, 129, 131, 132, 133, 134, 136, 137, 138, 139, 140, 144, 147, 148, 150, 152, 160, 171, 172
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.
We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.

Examples

			The terms together with their standard ordered trees begin:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   6: ((o)o)
   8: (ooo)
   9: ((oo))
  10: (((o))o)
  11: ((o)(o))
  12: ((o)oo)
  16: (oooo)
  17: ((((o))))
  18: ((oo)o)
  19: (((o))(o))
  20: (((o))oo)
		

Crossrefs

Positions of first appearances in A358506.
The unsorted version is A358522.
A000108 counts ordered rooted trees, unordered A000081.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    fir[q_]:=Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&];
    fir[Table[mgnum[srt[n]],{n,100}]]

A358522 Least number k such that the k-th standard ordered tree has Matula-Goebel number n, i.e., A358506(k) = n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 11, 10, 17, 12, 33, 18, 19, 16, 257, 22, 129, 20, 35, 34, 1025, 24, 37, 66, 43, 36, 513, 38, 65537, 32, 67, 514, 69, 44, 2049, 258, 131, 40
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2022

Keywords

Comments

We define the n-th standard ordered rooted tree to be obtained by taking the (n-1)-th composition in standard order (graded reverse-lexicographic, A066099) as root and replacing each part with its own standard ordered rooted tree. This ranking is an ordered variation of Matula-Goebel numbers, giving a bijective correspondence between positive integers and unlabeled ordered rooted trees.
The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees.

Examples

			The terms together with their standard ordered trees begin:
    1: o
    2: (o)
    3: ((o))
    4: (oo)
    5: (((o)))
    6: ((o)o)
    9: ((oo))
    8: (ooo)
   11: ((o)(o))
   10: (((o))o)
   17: ((((o))))
   12: ((o)oo)
   33: (((o)o))
   18: ((oo)o)
   19: (((o))(o))
   16: (oooo)
  257: (((oo)))
   22: ((o)(o)o)
  129: ((ooo))
   20: (((o))oo)
   35: ((oo)(o))
   34: ((((o)))o)
		

Crossrefs

Position of first appearance of n in A358506.
The sorted version is A358521.
A000108 counts ordered rooted trees, unordered A000081.
A214577 and A358377 rank trees with no permutations.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    srt[n_]:=If[n==1,{},srt/@stc[n-1]];
    mgnum[t_]:=If[t=={},1,Times@@Prime/@mgnum/@t];
    uv=Table[mgnum[srt[n]],{n,10000}];
    Table[Position[uv,k][[1,1]],{k,Min@@Complement[Range[Max@@uv],uv]-1}]

A298538 Matula-Goebel numbers of rooted trees such that every branch of the root has the same number of nodes.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 143, 149, 151, 157, 163, 167, 169, 173, 175, 179, 181, 187
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2018

Keywords

Examples

			Sequence of trees begins:
1  o
2  (o)
3  ((o))
4  (oo)
5  (((o)))
7  ((oo))
8  (ooo)
9  ((o)(o))
11 ((((o))))
13 ((o(o)))
16 (oooo)
17 (((oo)))
19 ((ooo))
23 (((o)(o)))
25 (((o))((o)))
27 ((o)(o)(o))
29 ((o((o))))
31 (((((o)))))
		

Crossrefs

Programs

  • Mathematica
    nn=500;
    primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGweight[n_]:=If[n===1,1,1+Total[MGweight/@primeMS[n]]];
    Select[Range[nn],SameQ@@MGweight/@primeMS[#]&]

A318690 Matula-Goebel numbers of powerful uniform rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 23, 25, 27, 31, 32, 36, 49, 53, 59, 64, 67, 81, 83, 97, 100, 103, 121, 125, 127, 128, 131, 151, 196, 216, 225, 227, 241, 243, 256, 277, 289, 311, 331, 343, 361, 419, 431, 441, 484, 509, 512, 529, 541, 563, 625, 661, 691
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a powerful uniform rooted tree iff either n = 1 or n is a prime number whose prime index is a Matula-Goebel number of a powerful uniform rooted tree or n is a squarefree number taken to a power > 1 whose prime indices are all Matula-Goebel numbers of powerful uniform rooted trees.

Examples

			The sequence of all powerful uniform rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  32: (ooooo)
  36: (oo(o)(o))
  49: ((oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    powunQ[n_]:=Or[n==1,If[PrimeQ[n],powunQ[PrimePi[n]],And[SameQ@@FactorInteger[n][[All,2]],Min@@FactorInteger[n][[All,2]]>1,And@@powunQ/@PrimePi/@FactorInteger[n][[All,1]]]]];
    Select[Range[100],powunQ]

A318692 Matula-Goebel numbers of series-reduced powerful uniform rooted trees.

Original entry on oeis.org

1, 4, 8, 16, 32, 49, 64, 128, 196, 256, 343, 361, 512, 1024, 1444, 2048, 2401, 2744, 2809, 4096, 6859, 8192, 11236, 16384, 16807, 17161, 17689, 32768, 38416, 51529, 54872, 65536, 68644, 70756, 96721, 117649, 130321, 131072, 137641, 148877, 206116, 262144
Offset: 1

Views

Author

Gus Wiseman, Aug 31 2018

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. A positive integer n is a Matula-Goebel number of a series-reduced powerful uniform rooted tree iff either n = 1 or n is a squarefree number, whose prime indices are all Matula-Goebel numbers of series-reduced powerful uniform rooted trees, taken to a power > 1.

Examples

			The sequence of all series-reduced powerful uniform rooted trees together with their Matula-Goebel numbers begins:
    1: o
    4: (oo)
    8: (ooo)
   16: (oooo)
   32: (ooooo)
   49: ((oo)(oo))
   64: (oooooo)
  128: (ooooooo)
  196: (oo(oo)(oo))
  256: (oooooooo)
  343: ((oo)(oo)(oo))
  361: ((ooo)(ooo))
  512: (ooooooooo)
		

Crossrefs

Programs

  • Mathematica
    srpowunQ[n_]:=Or[n==1,And[SameQ@@FactorInteger[n][[All,2]],Min@@FactorInteger[n][[All,2]]>1,And@@srpowunQ/@PrimePi/@FactorInteger[n][[All,1]]]];
    Select[Range[100000],srpowunQ]

A322386 Numbers whose prime indices are not prime and already belong to the sequence.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 19, 28, 32, 38, 43, 49, 53, 56, 64, 76, 86, 98, 106, 107, 112, 128, 131, 133, 152, 163, 172, 196, 212, 214, 224, 227, 256, 262, 263, 266, 301, 304, 311, 326, 343, 344, 361, 371, 383, 392, 424, 428, 443, 448, 454, 512, 521, 524, 526, 532
Offset: 1

Views

Author

Gus Wiseman, Dec 05 2018

Keywords

Comments

Union of A291636 (Matula-Goebel numbers of series-reduced rooted trees) and A322385.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A multiplicative semigroup: if x and y are in the sequence, then so is x*y. - Robert Israel, Dec 06 2018

Examples

			1 has no prime indices, so the definition is satisfied vacuously. - _Robert Israel_, Dec 07 2018
We have 301 = prime(4) * prime(14). Since 4 and 14 already belong to the sequence, so does 301.
		

Crossrefs

Programs

  • Maple
    Res:= 1: S:= {1}:
    for n from 2 to 1000 do
      F:= map(numtheory:-pi, numtheory:-factorset(n));
      if F subset S then
        Res:= Res, n;
        if not isprime(n) then S:= S union {n} fi
    fi
    od:
    Res; # Robert Israel, Dec 06 2018
  • Mathematica
    tnpQ[n_]:=With[{m=PrimePi/@First/@If[n==1,{},FactorInteger[n]]},And[!MemberQ[m,_?PrimeQ],And@@tnpQ/@m]]
    Select[Range[1000],tnpQ]
Previous Showing 51-60 of 66 results. Next