A215817 a(n) is the rational part of A(n) = (6-sqrt(7))*A(n-1) - (12-4*sqrt(7))*A(n-2) + (8-3*sqrt(7))*A(n-3) with A(0)=3, A(1)=6-sqrt(7), A(2)=19-4*sqrt(7).
3, 6, 19, 66, 237, 866, 3202, 11948, 44917, 169914, 646134, 2467988, 9462498, 36398004, 140399901, 542894726, 2103745125, 8167514346, 31762430143, 123704647562, 482435457922, 1883712663668, 7363103647479, 28809291337986, 112820819490970, 442175629583316
Offset: 0
Keywords
Links
- Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
- Roman Witula, Ramanujan Type Trigonometric Formulas: The General Form for the Argument 2*Pi/7, Journal of Integer Sequences, Vol. 12 (2009), Article 09.8.5
Formula
a(n) = rational part of c(1)^(2n) + c(2)^(2n) + c(4)^(2n) = (1-s(1))^n + (1-s(2))^n + (1-s(4))^n, where c(j) := 2*cos((7+8*j)/28) and s(j) := sin(2*Pi*j/7).
Empirical g.f.: -(2*x-1)*(6*x^4 -40*x^3 +58*x^2 -24*x +3) / (x^6 -24*x^5 +86*x^4 -104*x^3 +53*x^2 -12*x +1). - Colin Barker, Jun 01 2013
Comments