cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A215817 a(n) is the rational part of A(n) = (6-sqrt(7))*A(n-1) - (12-4*sqrt(7))*A(n-2) + (8-3*sqrt(7))*A(n-3) with A(0)=3, A(1)=6-sqrt(7), A(2)=19-4*sqrt(7).

Original entry on oeis.org

3, 6, 19, 66, 237, 866, 3202, 11948, 44917, 169914, 646134, 2467988, 9462498, 36398004, 140399901, 542894726, 2103745125, 8167514346, 31762430143, 123704647562, 482435457922, 1883712663668, 7363103647479, 28809291337986, 112820819490970, 442175629583316
Offset: 0

Views

Author

Roman Witula, Aug 25 2012

Keywords

Comments

The Berndt-type sequence number 14 for the argument 2Pi/7 defined by requiring a(n) to be the rational part of the trigonometric sum A(n) := c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n), where c(j) := 2*cos(Pi/4 + 2*Pi*j/7) = 2*cos((7+8*j)*Pi/28). We note that (A(n)-a(n))/sqrt(7) = A215877(n) are all integers. We have A(n)=2^n*O(n;i/2), where O(n;d) denote the big omega function with index n for the argument d in C defined in comments to A215794 (see also Witula-Slota's paper - Section 6). From the respective recurrence relation for this function we generate the title recurrence for A(n).

Crossrefs

Formula

a(n) = rational part of c(1)^(2n) + c(2)^(2n) + c(4)^(2n) = (1-s(1))^n + (1-s(2))^n + (1-s(4))^n, where c(j) := 2*cos((7+8*j)/28) and s(j) := sin(2*Pi*j/7).
Empirical g.f.: -(2*x-1)*(6*x^4 -40*x^3 +58*x^2 -24*x +3) / (x^6 -24*x^5 +86*x^4 -104*x^3 +53*x^2 -12*x +1). - Colin Barker, Jun 01 2013

A215877 a(n) = (A(n) - A215817(n))/sqrt(7), where A(n) = (6-sqrt(7))A(n-1) - (12-4*sqrt(7))A(n-2) + (8-3*sqrt(7))A(n-3), with A(0)=3, A(1)=6-sqrt(7), and A(2)=19-4*sqrt(7).

Original entry on oeis.org

0, -1, -4, -16, -64, -254, -1000, -3913, -15248, -59263, -229996, -892033, -3459544, -13421784, -52104416, -202436819, -787231328, -3064347392, -11940020992, -46569416006, -181808493296, -710442293743, -2778591945620, -10876271461745, -42606078512048
Offset: 0

Views

Author

Roman Witula, Aug 25 2012

Keywords

Comments

The Berndt-type sequence number 15 for the argument 2Pi/7 defined by requiring sqrt(7)*a(n) to be the irrational part of the trigonometric sum A(n) := c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n), where c(j) := 2*cos(Pi/4 + 2*Pi*j/7) = 2*cos((7+8*j)*Pi/28).
We note that A(n)-sqrt(7)*a(n)= A215817(n). For more facts on A(n) - see comments to A215817.

Examples

			We have a(2)/a(1) = a(3)/a(2) = a(4)/a(3) = 4, but a(5)-4*a(4)=2 and a(6)=4*(a(5)-a(2)). Moreover it follows
the relations: 4*A(1)-A(2) = 5 = (3+s(1))*(1-s(1)) + (3+s(2))*(1-s(2)) + (3+s(4))*(1-s(4)), 4*A(2)-A(3) = 10 =  (3+s(1))*(1-s(1))^2 + (3+s(2))*(1-s(2))^2 + (3+s(4))*(1-s(4))^2, 4*A(3)-A(4) = 27 = (3+s(1))*(1-s(1))^3 + (3+s(2))*(1-s(2))^3 + (3+s(4))*(1-s(4))^3, whereas 4*A(4)-a(5) = 82-2*sqrt(7) = (3+s(1))*(1-s(1))^4 + (3+s(2))*(1-s(2))^4 + (3+s(4))*(1-s(4))^4.
		

Crossrefs

Formula

sqrt(7)*a(n) = to the irrational part of c(1)^(2*n) + c(2)^(2*n) + c(4)^(2*n) = (1-s(1))^n + (1-s(2))^n + (1-s(4))^n, where c(j) = 2*cos((7+8*j)*Pi/28) and s(j) := sin(2*Pi*j/7).
Empirical g.f.: -x * (2*x-1)^2 * (x^2-4*x+1) / (x^6 -24*x^5 +86*x^4 -104*x^3 +53*x^2 -12*x +1). - Colin Barker, Jun 01 2013

A275830 a(n) = (2*sqrt(7)*sin(Pi/7))^n + (-2*sqrt(7)*sin(2*Pi/7))^n + (-2*sqrt(7)*sin(4*Pi/7))^n.

Original entry on oeis.org

3, -7, 49, -196, 1029, -4802, 24010, -117649, 588245, -2941225, 14823774, -74942413, 380476866, -1936973136, 9886633715, -50563069571, 259029803333, -1328763571296, 6823754590093, -35073821767334, 180407337377834, -928487386730281, 4780794440512601, -24625601552074341, 126883328914736618
Offset: 0

Views

Author

Kai Wang, Aug 11 2016

Keywords

Comments

2*sqrt(7)*sin(Pi/7), -2*sqrt(7)*sin(2*Pi/7) and -2*sqrt(7)*sin(4*Pi/7) are roots of polynomial x^3 + 7*x^2 - 49.

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0] == 3, a[1] == -7, a[2] == 49, a[n] == -7 a[n - 1] + 49 a[n - 3]}, a, {n, 0, 30}] (* Bruno Berselli, Aug 11 2016 *)
  • PARI
    Vec((3 + 14*x)/(1 + 7*x - 49*x^3) + O(x^30)) \\ Colin Barker, Aug 30 2016

Formula

G.f.: (3 + 14*x)/(1 + 7*x - 49*x^3). - Bruno Berselli, Aug 11 2016
a(n) = -7*a(n-1) + 49*a(n-3) with n>2, a(0)=3, a(1)=-7, a(2)=49.
a(2*n-1) = 7^n*A215493(n). - Kai Wang, May 25 2017

A217444 a(n) = A(n)*7^(-floor(n+1)/3), where A(n) = 7*A(n-1) - 14*A(n-2) + 7*A(n-3) with A(0)=0, A(1)=1, A(2)=7.

Original entry on oeis.org

0, 1, 1, 5, 22, 13, 52, 204, 113, 435, 1667, 910, 3471, 13224, 7192, 27367, 104105, 56563, 215098, 817909, 444276, 1689212, 6422529, 3488381, 13262821, 50424942, 27387681, 104126704, 395884336, 215018609, 817488295, 3108041875, 1688083894, 6417991803, 24400809980
Offset: 0

Views

Author

Roman Witula, Oct 03 2012

Keywords

Comments

The Berndt-type sequence number 18a for the argument 2Pi/7, which is closely connected with the sequence A217274. Definitions other Berndt-type sequences for the argument 2Pi/7 like A215575, A215877, A033304 in sequences from Crossrefs are given.

Crossrefs

Programs

  • Magma
    i:=35; I:=[0, 1, 7]; A:=[m le 3 select I[m] else 7*Self(m-1)-14*Self(m-2)+7*Self(m-3): m in [1..i]]; [7^(-Floor(n/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    CoefficientList[Series[x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1 - 10*x^3 + 17*x^6 - x^9), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
    LinearRecurrence[{0,0,10,0,0,-17,0,0,1}, {0, 1, 1, 5, 22, 13, 52, 204, 113}, 50] (* G. C. Greubel, Apr 23 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1+x+5*x^2+12*x^3+3*x^4 +2*x^5 +x^6)/(1- 10*x^3+17*x^6-x^9))) \\ G. C. Greubel, Apr 23 2018

Formula

G.f.: x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1-10*x^3+17*x^6-x^9). - Bruno Berselli, Oct 03 2012
a(n) = 10*a(n-3) - 17*a(n-6) + a(n-9). - G. C. Greubel, Apr 23 2018

A319512 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.

Original entry on oeis.org

1, 3, 11, 42, 161, 616, 2352, 8967, 34153, 129997, 494606, 1881355, 7154980, 27208132, 103456689, 393367835, 1495638123, 5686513994, 21620239081, 82199944512, 312521862408, 1188195487255, 4517461948657, 17175149855885, 65298950120782, 248262786503683
Offset: 0

Views

Author

Kai Wang, Dec 10 2018

Keywords

Comments

Let {X,Y,Z} be the roots of the cubic equation
t^3 + at^2 + bt + c = 0
where {a, b, c} are integers. Let {u, v, w} be three numbers such that {u + v + w, u*X + v*Y + w*Z, u*X^2 + v*Y^2 + w*Z^2} are integers. Then
{p(n) = u*X^n + v*Y^n + w*Z^n | n = 0, 1, 2, ...}
is an integer sequence with the recurrence relation:
p(n) = -a*p(n-1) - b*p(n-2) - c*p(n-3).
This sequence has (a, b, c) = (-7, 14, -7), (u, v, w) = (1/(sqrt(7)*tan(4*(Pi/7))), 1/(sqrt(7)*tan(8*(Pi/7))), 1/(sqrt(7)*tan(2*(Pi/7)))).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{7, -14, 7}, {1, 3, 11}, 30] (* Amiram Eldar, Dec 10 2018 *)
    CoefficientList[Series[(1-2x)^2/(1-7x+14x^2-7x^3),{x,0,30}],x] (* Harvey P. Dale, Oct 08 2023 *)
  • PARI
    Vec((1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3) + O(x^40)) \\ Colin Barker, Dec 11 2018

Formula

(X, Y, Z) = (4*sin^2(2*(Pi/7)), 4*sin^2(4*(Pi/7)), 4*sin^2(8*(Pi/7)));
a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3), a(0) = 1, a(1) = 3, a(2) = 11.
G.f.: (1 - 2*x)^2 / (1 - 7*x + 14*x^2 - 7*x^3). - Colin Barker, Dec 11 2018

Extensions

More terms from Felix Fröhlich, Dec 10 2018

A218664 Coefficients of cubic polynomials p(x+n), where p(x) = x^3 + x^2 - 2*x - 1.

Original entry on oeis.org

1, 1, -2, -1, 1, 4, 3, -1, 1, 7, 14, 7, 1, 10, 31, 29, 1, 13, 54, 71, 1, 16, 83, 139, 1, 19, 118, 239, 1, 22, 159, 377, 1, 25, 206, 559, 1, 28, 259, 791, 1, 31, 318, 1079, 1, 34, 383, 1429, 1, 37, 454, 1847, 1, 40, 531, 2339, 1, 43, 614, 2911, 1, 46, 703, 3569, 1, 49, 798, 4319
Offset: 0

Views

Author

Roman Witula, Nov 04 2012

Keywords

Comments

We have p(x) = (x - c(1))*(x - c(2))*(x - c(4)), where c(j) := 2*cos(2*Pi*j/7). We note that c(4) = c(3) = -c(1/2), c(1) = s(3) and c(2) = -s(1), where s(j) := 2*sin(Pi*j/14). Moreover we obtain -p(-x) = x^3 - x^2 - 2*x + 1 = (x + c(1))*(x + c(2))*(x + c(4)), q(x) := -x^3*p(1/x) = x^3 + 2*x^2 + x - 1 = (x - c(1)^(-1))*(x - c(2)^(-1))*(x - c(4)^(-1)), and -q(-x) = x^3 - 2*x^2 + x + 1 = (x + c(1)^(-1))*(x + c(2)^(-1))*(x + c(4)^(-1)).
We also have p(x+2) = x^3 + 7*x^2 + 14*x + 7 = (x + s(2)^2)*(x + s(4)^2)*(x + s(6)^2). The polynomial -p(-x-2) = x^3 - 7*x^2 + 14*x - 7 = (x - s(2)^2)*(x - s(4)^2)*(x - s(6)^2) is known as Johannes Kepler's cubic polynomial (see Witula's book).
Let us set r(x) := p(x+1). It can be verified that -x^3*r(1/x) = x^3 - 3*x^2 - 4*x - 1 = (x - c(1)/c(4))*(x - c(4)/c(2))*(x - c(2)/c(1)); for example, we have c(1)^3 + c(1)^2 - 2*c(1) - 1 = 0 which implies that c(1)^2 + 2*c(1) = 1/(c(1) - 1), and then c(1)^2 + 2*c(1) = c(4)/c(2) since c(4)/c(2) = (c(1)^4 - 4*c(1)^2 + 2)/(c(1)^2 - 2).
The polynomials p(x+n) and the ones obtained as above (i.e., after simple algebraic transformations) are the characteristic polynomials of many sequences in the OEIS; see crossrefs.

References

  • R. Witula, Complex Numbers, Polynomials and Partial Fraction Decomposition, Part 3, Wydawnictwo Politechniki Slaskiej, Gliwice 2010 (Silesian Technical University publishers).

Crossrefs

Formula

We have a(4*k) = 1, a(4*k + 1) = 3*k + 1, a(4*k + 2) = 3*k^2 + 2*k - 2, a(4*k + 3) = k^3 + k^2 - 2*k - 1. Further, the following relations hold true: b(k+1) = b(k) + 3, c(k+1) = 2*b(k) -2*c(k) + 3, d(k+1) = b(k) - 2*c(k) - d(k) + 1, where p(x + k) = x^3 + b(k)*x^2 + c(k)*x + d(k).
Empirical g.f.: -(x^15 - x^14 - 2*x^13 + x^12 - 5*x^11 + 10*x^10 + 3*x^9 - 3*x^8 - 3*x^7 - 11*x^6 + 3*x^4 + x^3 + 2*x^2 - x - 1) / ((x-1)^4*(x+1)^4*(x^2+1)^4). - Colin Barker, May 17 2013
Previous Showing 11-16 of 16 results.