cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A215945 a(n) = - 3^n*A(2*n+1), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3, with A(0)=A(1)=3, A(2)=11.

Original entry on oeis.org

-3, -105, -3387, -108945, -3504051, -112702329, -3624894315, -116589061665, -3749904995427, -120609834867081, -3879226882922139, -124769271310005681, -4013008656895890963, -129072153032843014809, -4151404124161560449739
Offset: 0

Views

Author

Roman Witula, Aug 28 2012

Keywords

Comments

The Berndt-type sequence number 11 for the argument 2Pi/9 connecting with the following sequence T(n) := t(1)^n + (-t(2))^n + t(4)^n, where t(j) := tan(2*Pi*j/9). More precisely we have sqrt(3)*a(n) = T(2*n+1) = (-sqrt(3))^n*W(n;2*i/sqrt(3)), where W(n;d) := (1 + 2*i*d*s(1))^n
+ (1 - 2*i*d*s(2))^n + (1 + 2*i*d*s(4))^n, n=0,1,..., d in C. For example we have W(0;d)=W(1;d)=3, W(2;d)=3-6*d^2. The characteristic polynomial of W(n;d) has the form ((x-1)-2*i*d*s(1))*((x-1)-2*i*d*s(2))*((x-1)-2*i*d*s(4)) = (x-1)^3 + 3*d^2*(x-1) - sqrt(3)*i*d^3 = x^3 - 3*x^2 + 3*(1+d^2)*x - 1 - 3*d^2 - sqrt(3)*i*d^3, which implies the recurrence form of W(n;d) = 3*W(n-1;d) - 3*(1+d^2)*W(n-2;d) + (1+3*d^2+sqrt(3)*i*d^3)*W(n-3;d). In consequence we obtain the title recurrence relation for
A(n) := W(n;2*i/sqrt(3)). The polynomials W(n;d) are equivalent of the big omega function with index n of argument d defined and discussed in Witula-Slota's paper (Section 6) and in comments to A215794.
We note that all numbers a(n)/3 and 3^(-1+floor((n+1)/3))*A(n) = A216034(n) are integers.
The following decomposition hold true: (X - t(1)^n)*(X - (-t(2))^n)*(X - t(4)^n) = X^3 - (-sqrt(3))^n*A(n)*X^2 + A215829(n)*X - sqrt(3)^n. Moreover we have A215829(n) = (T(n)^2 - T(2*n))/2, which implies A215829(2*n+1) = (3*a(n)^2 - A215948(2*n+1))/2 and A215829(2*n) = (A215948(n)^2 - A215948(2*n))/2.

Examples

			We have 35*(t(1) - t(2) + t(3)) =  t(1)^3 - t(2)^3 + t(4)^3, t(1)^7 - t(2)^7 + t(4)^7 = -5*81*269*sqrt(3) and t(1)^9 - t(2)^9 + t(4)^9 = -9*389339*sqrt(3).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Magma
    m:=17; R:=PowerSeriesRing(Integers(), m); Coefficients(R!(-3*(1+x)^2/(1-33*x+27*x^2-3*x^3))); // Bruno Berselli, Aug 29 2012
    
  • Magma
    I:=[-3, -105, -3387]; [n le 3 select I[n] else 33*Self(n-1)-27*Self(n-2)+3*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Mar 19 2013
  • Mathematica
    LinearRecurrence[{33, -27, 3}, {-3, -105, -3387}, 17] (* Bruno Berselli, Aug 29 2012 *)
    CoefficientList[Series[-3 (1 + x)^2/(1 - 33 x + 27 x^2 - 3 x^3), {x, 0, 20}], x] (* Vincenzo Librandi, Mar 19 2013 *)

Formula

sqrt(3)*a(n) = t(1)^(2*n+1) - t(2)^(2*n+1) + t(4)^(2*n+1) = (-sqrt(3) + 4*s(1))^(2*n+1) + (-sqrt(3) - 4*s(2))^(2*n+1) + (-sqrt(3) + 4*s(4))^(2*n+1), where t(j) := tan(2*Pi*j/9) and s(j) := sin(2*Pi*j/9).
a(n) = 33*a(n-1) - 27*a(n-2) + 3*a(n-3).
G.f.: -3*(1+x)^2/(1-33*x+27*x^2-3*x^3). - Bruno Berselli, Aug 29 2012

A215948 a(n) = 3^n*A(2*n), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3 with A(0)=A(1)=3, A(2)=11.

Original entry on oeis.org

3, 33, 1035, 33273, 1070163, 34420113, 1107069147, 35607149289, 1145248319907, 36835122733569, 1184744167018155, 38105444942752473, 1225602095969542131, 39419576386041628017, 1267869080483024344443, 40779027899804588036553, 1311593714249667872790339
Offset: 0

Views

Author

Roman Witula, Aug 28 2012

Keywords

Comments

The Berndt-type sequence number 12 for the argument 2*Pi/9 defined by the first trigonometric relations from the section "Formula" below (it is the complement of the sequence A215945). For more information see comments to A215945. We note that all a(n)/3 and 3^(-1 + floor((n+3)/3))*A(n) = A216034(n) are integers.

Examples

			We have t(1)^4 + t(2)^4 + t(4)^4 = 1035 = (345/11)*(t(1)^2 + t(2)^2 + t(4)^2) and (1 - 4*s(1)/sqrt(3))^4 + (1 + 4*s(2)/sqrt(3))^4 + (1 - 4*s(4)/sqrt(3))^4 = 115. Moreover we get a(2)/a(1) = 31,(36), a(3)/a(1) = 1008,(27), a(4)/a(1) = 32429,(18).
		

References

  • D. Chmiela and R. Witula, Two parametric quasi-Fibonacci numbers of the ninth order, (submitted, 2012).
  • R. Witula, Ramanujan type formulas for arguments 2Pi/7 and 2Pi/9, Demonstratio Math. (in press, 2012).

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{33,-27,3}, {3,33,1035}, 50]

Formula

a(n) = t(1)^(2*n) + t(2)^(2*n) + t(4)^(2*n) = (-sqrt(3) + 4*s(1))^(2*n) + (sqrt(3) + 4*s(2))^(2*n) + (-sqrt(3) + 4*s(4))^(2*n), where t(j) := tan(2*Pi*j/9) and s(j) := sin(2*Pi*j/9). For the respective sums of odd powers - see A215945.
a(n) = 33*a(n-1) - 27*a(n-2) + 3*a(n-3).
G.f.: 3*(1-22*x+9*x^2)/(1-33*x+27*x^2-3*x^3).
a(n) = cot(Pi/18)^(2*n) + cot(5*Pi/18)^(2*n) + cot(7*Pi/18)^(2*n). - Greg Dresden, Oct 01 2020

A216034 a(n) = 3^(-1+floor((n+1)/3))*A(n), where A(n) = 3*A(n-1) + A(n-2) - A(n-3)/3 with A(0)=A(1)=3, A(2)=11.

Original entry on oeis.org

1, 1, 11, 35, 115, 1129, 3697, 12105, 118907, 389339, 1274819, 12522481, 41002561, 134255345, 1318783307, 4318113395, 14138868147, 138885370201, 454754601649, 1489010307001, 14626471197755, 47891689912619, 156812530628611, 1540361374197601
Offset: 0

Views

Author

Roman Witula, Aug 30 2012

Keywords

Comments

The Berndt-type sequence number 11a for the argument 2Pi/9 - see A215945 for more details.

Crossrefs

Programs

  • Magma
    i:=24; I:=[3,3,11]; A:=[m le 3 select I[m] else 3*Self(m-1)+Self(m-2)-Self(m-3)/3: m in [1..i]]; [3^(-1+Floor(n/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 02 2012

Formula

G.f.: (1+x+11*x^2-70*x^3+10*x^4-26*x^5-11*x^6-3*x^7-x^8)/(1-105*x^3-33*x^6+x^9). [Bruno Berselli, Oct 02 2012]

A217444 a(n) = A(n)*7^(-floor(n+1)/3), where A(n) = 7*A(n-1) - 14*A(n-2) + 7*A(n-3) with A(0)=0, A(1)=1, A(2)=7.

Original entry on oeis.org

0, 1, 1, 5, 22, 13, 52, 204, 113, 435, 1667, 910, 3471, 13224, 7192, 27367, 104105, 56563, 215098, 817909, 444276, 1689212, 6422529, 3488381, 13262821, 50424942, 27387681, 104126704, 395884336, 215018609, 817488295, 3108041875, 1688083894, 6417991803, 24400809980
Offset: 0

Views

Author

Roman Witula, Oct 03 2012

Keywords

Comments

The Berndt-type sequence number 18a for the argument 2Pi/7, which is closely connected with the sequence A217274. Definitions other Berndt-type sequences for the argument 2Pi/7 like A215575, A215877, A033304 in sequences from Crossrefs are given.

Crossrefs

Programs

  • Magma
    i:=35; I:=[0, 1, 7]; A:=[m le 3 select I[m] else 7*Self(m-1)-14*Self(m-2)+7*Self(m-3): m in [1..i]]; [7^(-Floor(n/3))*A[n]: n in [1..i]]; // Bruno Berselli, Oct 03 2012
    
  • Mathematica
    CoefficientList[Series[x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1 - 10*x^3 + 17*x^6 - x^9), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 15 2012 *)
    LinearRecurrence[{0,0,10,0,0,-17,0,0,1}, {0, 1, 1, 5, 22, 13, 52, 204, 113}, 50] (* G. C. Greubel, Apr 23 2018 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x*(1+x+5*x^2+12*x^3+3*x^4 +2*x^5 +x^6)/(1- 10*x^3+17*x^6-x^9))) \\ G. C. Greubel, Apr 23 2018

Formula

G.f.: x*(1+x+5*x^2+12*x^3+3*x^4+2*x^5+x^6)/(1-10*x^3+17*x^6-x^9). - Bruno Berselli, Oct 03 2012
a(n) = 10*a(n-3) - 17*a(n-6) + a(n-9). - G. C. Greubel, Apr 23 2018

A322459 Sum of n-th powers of the roots of x^3 + 7*x^2 + 14*x + 7.

Original entry on oeis.org

3, -7, 21, -70, 245, -882, 3234, -12005, 44933, -169099, 638666, -2417807, 9167018, -34790490, 132119827, -501941055, 1907443237, -7249766678, 27557748813, -104759610858, 398257159370, -1514069805269, 5756205681709, -21884262613787, 83201447389466, -316323894905207
Offset: 0

Views

Author

Kai Wang, Dec 09 2018

Keywords

Comments

Let A = sin(2*Pi/7), B = sin(4*Pi/7), C = sin(8*Pi/7).
In general, for integer h, k let
X = sqrt(7)*A^(h+k-1)/(2*B^h*C^k),
Y = sqrt(7)*B^(h+k-1)/(2*C^h*A^k),
Z = sqrt(7)*C^(h+k-1)/(2*A^h*B^k),
then X, Y, Z are the roots of a monic equation
t^3 + a*t^2 + b*t + c = 0
where a, b, c are integers and c = 1 or -1.
Then X^n + Y^n + Z^n , n = 0, 1, 2, ... is an integer sequence.
This sequence has (h,k) = (1,1).

Crossrefs

Similar sequences with (h,k) values: A275831 (0,0), A215575 (0,2).

Programs

  • Mathematica
    LinearRecurrence[{-7, -14, -7},{3, -7, 21}, 50] (* Amiram Eldar, Dec 09 2018 *)
    CoefficientList[Series[(3+14*x+14*x^2)/(1+7*x+14*x^2+7*x^3), {x, 0, 25}], x] (* G. C. Greubel, Dec 16 2018 *)
  • PARI
    Vec((3 + 14*x + 14*x^2) / (1 + 7*x + 14*x^2 + 7*x^3) + O(x^40)) \\ Colin Barker, Dec 09 2018
    
  • PARI
    polsym(x^3 + 7*x^2 + 14*x + 7, 25) \\ Joerg Arndt, Dec 17 2018

Formula

a(n) = (sqrt(7))^n*( (A/(2*B*C))^n + (B/(2*C*A))^n + (C/(2*A*B))^n ).
a(n) = -7*a(n-1) - 14*a(n-2) - 7*a(n-3) for n>2.
G.f.: (3 + 14*x + 14*x^2) / (1 + 7*x + 14*x^2 + 7*x^3). - Colin Barker, Dec 09 2018

A287396 a(n) = (7*(csc(2*Pi/7))^2)^n + (7*(csc(4*Pi/7))^2)^n + (7*(csc(8*Pi/7))^2)^n.

Original entry on oeis.org

3, 56, 1568, 53312, 1931776, 71300096, 2645479424, 98305622016, 3654656065536, 135885355483136, 5052615982317568, 187873377732526080, 6985794697679601664, 259756778648305139712, 9658687473893481906176, 359144636249686988029952, 13354285908291066433372160
Offset: 0

Views

Author

Kai Wang, May 24 2017

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{56,-784,3136},{3,56,1568},30] (* Harvey P. Dale, Aug 08 2017 *)
  • PARI
    Vec((3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3) + O(x^30)) \\ Colin Barker, May 25 2017
    
  • PARI
    polsym(x^3 - 56*x^2 + 784* x - 3136, 20) \\ Joerg Arndt, May 26 2017

Formula

a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 56*x^2 + 784* x - 3136, x1 = 7*(csc(2*Pi/7))^2, x2 = 7*(csc(4*Pi/7))^2, x3 = 7*(csc(8*Pi/7))^2.
a(n) = 56*a(n-1) - 784*a(n-2) + 3136*a(n-3) for n>2, a(0) = 3, a(1) = 56, a(2) = 1568.
G.f.: (3 - 28*x)*(1 - 28*x) / (1 - 56*x + 784*x^2 - 3136*x^3). - Colin Barker, May 25 2017

A287405 a(n) = (7*(cot(1*Pi/7))^2)^n + (7*(cot(2*Pi/7))^2)^n + (7*(cot(4*Pi/7))^2)^n.

Original entry on oeis.org

3, 35, 931, 27587, 830403, 25054435, 756187747, 22824258947, 688917131651, 20793986742179, 627637106311971, 18944339609269571, 571808137046942019, 17259221092289630307, 520945214725090792931, 15723995613526902256387, 474606601742375424297731
Offset: 0

Views

Author

Kai Wang, May 24 2017

Keywords

Comments

a(n) = x1^n + x2^n + x3^n, where x1, x2, x3 are the roots of x^3 - 35*x^2 + 147*x - 49, x1 = 7*(cot(1*Pi/7))^2, x2 = 7*(cot(2*Pi/7))^2, x3 = 7*(cot(4*Pi/7))^2.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{35,-147,49},{3,35,931},30] (* Harvey P. Dale, Mar 15 2018 *)
  • PARI
    Vec((3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3) + O(x^30)) \\ Colin Barker, May 26 2017
    
  • PARI
    polsym(x^3 - 35*x^2 + 147*x - 49, 20) \\ Joerg Arndt, May 26 2017

Formula

a(n) = 35*a(n-1) - 147*a(n-2) + 49*a(n-3), a(0) = 3, a(1) = 35, a(2) = 931.
Bisection of A215575: a(n) = A215575(2*n).
G.f.: (3 - 7*x)*(1 - 21*x) / (1 - 35*x + 147*x^2 - 49*x^3). - Colin Barker, May 26 2017
Previous Showing 11-17 of 17 results.