cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A219928 Number of tilings of a 9 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 55, 595, 9028, 127707, 1830234, 26160354, 374285478, 5353011036, 76569060586, 1095191883209, 15665062073662, 224064344818735, 3204894379079451, 45841053844805851, 655685372871482854, 9378564896063570084, 134145862914757375163, 1918749051397966520006
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2012

Keywords

Crossrefs

Column k=9 of A219924.
Cf. A226552.

A219929 Number of tilings of a 10 X n rectangle using integer-sided square tiles.

Original entry on oeis.org

1, 1, 89, 1278, 26738, 517881, 10171315, 199243634, 3906605183, 76569060586, 1500957422222, 29421452263473, 576720342887239, 11304856454549226, 221597668862377866, 4343754040692960588, 85146204614736790139, 1669034648958758680516, 32716392842324236695259
Offset: 0

Views

Author

Alois P. Heinz, Dec 01 2012

Keywords

Crossrefs

Column k=10 of A219924.
Cf. A226553.

A226206 Number A(n,k) of tilings of a k X n rectangle using integer-sided square tiles of area > 1; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 3, 1, 3, 0, 1, 0, 1, 1, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 1, 1, 0, 1, 1, 5, 0, 7, 0, 5, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 7, 7, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Alois P. Heinz, May 31 2013

Keywords

Examples

			A(6,4) = A(4,6) = 3:
  ._._._._._._.   ._._._._._._.   ._._._._._._.
  |   |   |   |   |       |   |   |   |       |
  |___|___|___|   |       |___|   |___|       |
  |   |   |   |   |       |   |   |   |       |
  |___|___|___|   |_______|___|   |___|_______|  .
Square array A(n,k) begins:
  1, 1, 1, 1, 1, 1,  1, 1,   1,  1,   1, ...
  1, 0, 0, 0, 0, 0,  0, 0,   0,  0,   0, ...
  1, 0, 1, 0, 1, 0,  1, 0,   1,  0,   1, ...
  1, 0, 0, 1, 0, 0,  1, 0,   0,  1,   0, ...
  1, 0, 1, 0, 2, 0,  3, 0,   5,  0,   8, ...
  1, 0, 0, 0, 0, 1,  2, 0,   0,  0,   1, ...
  1, 0, 1, 1, 3, 2,  7, 7,  16, 19,  40, ...
  1, 0, 0, 0, 0, 0,  7, 1,   0,  0,   2, ...
  1, 0, 1, 0, 5, 0, 16, 0,  48,  0, 160, ...
  1, 0, 0, 1, 0, 0, 19, 0,   0, 50,  17, ...
  1, 0, 1, 0, 8, 1, 40, 2, 160, 17, 796, ...
  ...
		

Crossrefs

Main diagonal gives A347800.
Cf. A219924.

Programs

  • Maple
    b:= proc(n, l) option remember; local i, k, s, t;
          if max(l[])>n then 0 elif n=0 or l=[] then 1
        elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
        else for k do if l[k]=0 then break fi od; s:=0;
             for i from k+1 to nops(l) while l[i]=0 do s:=s+
               b(n, [l[j]$j=1..k-1, 1+i-k$j=k..i, l[j]$j=i+1..nops(l)])
             od; s
          fi
        end:
    A:= (n, k)-> `if`(n>=k, b(n, [0$k]), b(k, [0$n])):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_List] := b[n, l] = Module[{i, k, s, t}, Which [Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; s = 0; For[i = k+1, i <= Length[l] && l[[i]] == 0, i++, s = s + b[n, Join [l[[1 ;; k-1]], Table[1+i-k, {j, k, i}], l[[i+1 ;; -1]] ]]]; s]]; a [n_, k_] := If[n >= k, b[n, Array[0&, k]], b[k, Array[0&, n]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)

A226979 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 2 elements.

Original entry on oeis.org

0, 0, 0, 2, 2, 24, 36, 344, 504, 7657, 11978, 289829
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 2 dissections where the orbits under the symmetry group of the square, D4, have 2 elements.
For n=4, the 2 dissections can be seen in A240120 and A240121.
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).
A226979(n) = A240120(n) + A240121(n) + A240122(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 01 2014

A226980 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 4 elements.

Original entry on oeis.org

0, 0, 1, 6, 26, 264, 1157, 23460, 153485, 6748424, 70521609, 6791578258
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 26 dissections where the orbits under the symmetry group of the square, D4, have 4 elements.
The 6 dissections for n=4 can be seen in A240123 and A240125.
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).
A226980(n) = A240123(n) + A240124(n) + A240125(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 01 2014

A362142 Triangle read by rows: T(n,k) is the maximum number of ways in which a set of integer-sided squares can tile an n X k rectangle, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 1, 3, 6, 16, 1, 1, 4, 12, 37, 140, 1, 1, 6, 24, 105, 454, 1987, 1, 1, 10, 40, 250, 1566, 9856, 62266, 1, 1, 15, 80, 726, 5670, 47394, 406168, 3899340, 1, 1, 21, 160, 1824, 18738, 223696, 2916492, 38322758, 508317004
Offset: 0

Views

Author

Pontus von Brömssen, Apr 10 2023

Keywords

Examples

			Triangle begins:
  n\k| 0  1  2  3   4    5     6      7       8
  ---+-----------------------------------------
  0  | 1
  1  | 1  1
  2  | 1  1  1
  3  | 1  1  2  4
  4  | 1  1  3  6  16
  5  | 1  1  4 12  37  140
  6  | 1  1  6 24 105  454  1987
  7  | 1  1 10 40 250 1566  9856  62266
  8  | 1  1 15 80 726 5670 47394 406168 3899340
A 5 X 4 rectangle can be tiled by 12 unit squares and 2 squares of side 2 in the following ways:
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |   |   |   |   |   |       |   |   |   |   |       |   |   |   |   |       |
  +---+---+---+---+   +       +---+---+   +---+       +---+   +---+---+       +
  |   |   |       |   |       |   |   |   |   |       |   |   |   |   |       |
  +---+---+       +   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |       |       |   |       |   |   |   |       |   |   |   |       |   |   |
  +       +---+---+   +       +---+---+   +       +---+---+   +       +---+---+
  |       |   |   |   |       |   |   |   |       |   |   |   |       |   |   |
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
.
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |   |       |   |   |   |   |   |   |   |   |   |   |   |   |       |   |   |
  +---+       +---+   +---+---+---+---+   +---+---+---+---+   +       +---+---+
  |   |       |   |   |       |   |   |   |   |   |   |   |   |       |   |   |
  +---+---+---+---+   +       +---+---+   +---+---+---+---+   +---+---+---+---+
  |   |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |       |   |   |   |   |       |   |   |       |       |   |       |   |   |
  +       +---+---+   +---+       +---+   +       +       +   +       +---+---+
  |       |   |   |   |   |       |   |   |       |       |   |       |   |   |
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
.
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |   |   |       |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
  +---+---+       +   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
  |   |   |       |   |   |       |   |   |   |   |   |   |   |   |   |       |
  +---+---+---+---+   +---+       +---+   +---+---+---+---+   +---+---+       +
  |   |   |   |   |   |   |       |   |   |       |       |   |       |       |
  +---+---+---+---+   +---+---+---+---+   +       +       +   +       +---+---+
  |       |   |   |   |   |       |   |   |       |       |   |       |   |   |
  +       +---+---+   +---+       +---+   +---+---+---+---+   +---+---+---+---+
  |       |   |   |   |   |       |   |   |   |   |   |   |   |   |   |   |   |
  +---+---+---+---+   +---+---+---+---+   +---+---+---+---+   +---+---+---+---+
.
  +---+---+---+---+
  |   |       |   |
  +---+       +---+
  |   |       |   |
  +---+---+---+---+
  |   |   |   |   |
  +---+---+---+---+
  |   |       |   |
  +---+       +---+
  |   |       |   |
  +---+---+---+---+
The first six of these have no symmetries, so they account for 4 tilings each. The next six have either a mirror symmetry or a rotational symmetry and account for 2 tilings each. The last has full symmetry and accounts for 1 tiling. In total there are 6*4+6*2+1 = 37 tilings. This is the maximum for a 5 X 4 rectangle, so T(5,4) = 37.
		

Crossrefs

Main diagonal: A362143.
Columns: A000012 (k = 0,1), A073028 (k = 2), A362144 (k = 3), A362145 (k = 4), A362146 (k = 5).
Cf. A219924, A224697, A361216 (rectangular pieces).

A225777 Number T(n,k,u) of distinct tilings of an n X k rectangle using integer-sided square tiles containing u nodes that are unconnected to any of their neighbors; irregular triangle T(n,k,u), 1 <= k <= n, u >= 0, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 4, 0, 0, 1, 1, 1, 3, 1, 1, 6, 4, 0, 2, 1, 9, 16, 8, 5, 0, 0, 0, 0, 1, 1, 1, 4, 3, 1, 8, 12, 0, 3, 4, 1, 12, 37, 34, 15, 12, 4, 0, 0, 2, 1, 16, 78, 140, 88, 44, 68, 32, 0, 4, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Keywords

Comments

The number of entries per row is given by A225568.

Examples

			The irregular triangle begins:
n,k\u 0   1   2   3   4   5   6   7   8   9  10  11  12 ...
1,1   1
2,1   1
2,2   1   1
3,1   1
3,2   1   2
3,3   1   4   0   0   1
4,1   1
4,2   1   3   1
4,3   1   6   4   0   2
4,4   1   9  16   8   5   0   0   0   0   1
5,1   1
5,2   1   4   3
5,3   1   8  12   0   3   4
5,4   1  12  37  34  15  12   4   0   0   2
5,5   1  16  78 140  88  44  68  32   0   4   0   0   0 ...
...
For n = 4, k = 3, there are 4 tilings that contain 2 isolated nodes, so T(4,3,2) = 4. A 2 X 2 square contains 1 isolated node.  Consider that each tiling is composed of ones and zeros where a one represents a node with one or more links to its neighbors and a zero represents a node with no links to its neighbors.  Then the 4 tilings are:
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 0 1 1    1 1 0 1    1 1 0 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
   1 0 1 1    1 1 0 1    1 0 1 1    1 1 0 1
   1 1 1 1    1 1 1 1    1 1 1 1    1 1 1 1
		

Crossrefs

Formula

T(n,k,0) = 1, T(n,k,1) = (n-1)(k-1), T(n,k,2) = (n^2(k-1) - n(2k^2+5k-13) + (k^2+13k-24))/2.
Sum_{u=1..(n-1)^2} T(n,n,u) = A045846(n).

A226978 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 1 element.

Original entry on oeis.org

1, 2, 2, 4, 4, 12, 8, 44, 32, 228, 148, 1632, 912, 16004, 8420, 213680, 101508, 3933380, 1691008, 98949060, 38742844, 3413919788, 1213540776, 161410887252, 52106993880
Offset: 1

Views

Author

Keywords

Comments

From Walter Trump, Dec 15 2022: (Start)
a(n) is the number of fully symmetric dissections of an n X n square into squares with integer sides.
Conjecture: For n>3 the number of dissections is a multiple of 4. (End)

Examples

			For n=5, there are 4 dissections where the orbits under the symmetry group of the square, D4, have 1 element.
For n=4, 3 dissections divide the square into uniform subsquares (of sizes 1, 2 and 4 respectively), and this is the 4th:
---------
| | | | |
---------
| |   | |
---   ---
| |   | |
---------
| | | | |
---------
		

Crossrefs

Formula

a(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*a(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 02 2014
a(13)-a(25) from Walter Trump, Dec 15 2022

A226981 Number of ways to cut an n X n square into squares with integer sides, reduced for symmetry, where the orbits under the symmetry group of the square, D4, have 8 elements.

Original entry on oeis.org

0, 0, 0, 1, 45, 1194, 55777, 4471175, 669049507, 187616301623, 98793450008033, 97702667035688951
Offset: 1

Views

Author

Keywords

Examples

			For n=5, there are 45 dissections where the orbits under the symmetry group of the square, D4, have 8 elements.
For n=4, this is the only dissection:
---------
|   | | |
|   -----
|   |   |
-----   |
| | |   |
---------
| | | | |
---------
		

Crossrefs

Formula

A226978(n) + A226979(n) + A226980(n) + A226981(n) = A224239(n).
1*A226978(n) + 2*A226979(n) + 4*A226980(n) + 8*A226981(n) = A045846(n).

Extensions

a(8)-a(12) from Ed Wynn, Apr 02 2014

A224850 Number T(n,k) of tilings of an n X k rectangle using integer-sided square tiles reduced for symmetry, where the orbits under the symmetry group of the rectangle, D2, have 1 element; triangle T(n,k), k >= 1, 0 <= n < k, read by columns.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 5, 2, 12, 6, 1, 1, 3, 3, 5, 7, 17, 1, 1, 8, 3, 25, 11, 106, 44
Offset: 1

Views

Author

Keywords

Comments

It appears that sequence T(2,k) consists of 2 interspersed Fibonacci sequences.
The diagonal T(n,n) is A006081. - M. F. Hasler, Jul 25 2013

Examples

			The triangle is:
n\k  1   2   3   4   5   6   7   8 ...
.
0    1   1   1   1   1   1   1   1 ...
1        1   1   1   1   1   1   1 ...
2            1   3   2   5   3   8 ...
3                1   2   2   3   3 ...
4                    3  12   5  25 ...
5                        6   7  11 ...
6                           17 106 ...
7                               44 ...
...
T(3,5) = 2 because there are 2 different tilings of the 3 X 5 rectangle by integer-sided squares, where any sequence of group D2 operations will only transform each tiling into itself.  Group D2 operations are:
.   the identity operation
.   rotation by 180 degrees
.   reflection about a horizontal axis through the center
.   reflection about a vertical axis through the center
The tilings are:
._________.    ._________.
|_|_|_|_|_|    |_|     |_|
|_|_|_|_|_|    |_|     |_|
|_|_|_|_|_|    |_|_____|_|
		

Crossrefs

Formula

T(n,k) + A224861(n,k) + A224867(n,k) = A227690(n,k).
1*T(n,k) + 2*A224861(n,k) + 4*A224867(n,k) = A219924(n,k).
Previous Showing 11-20 of 25 results. Next